Geometric optics for one-dimensional Schrodinger-Poisson system

被引:0
|
作者
Zhifei Zhang [1 ]
Qionglei Chen
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Schrodinger-Poisson; geometric optics; Lagrangian integral;
D O I
10.1007/s11401-004-0074-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a family of Schrodinger-Poisson system in one dimension, whose initial data oscillates so that a caustic appears. By using the Lagrangian integrals, the authors obtain a uniform description of the solution outside the caustic, and near the caustic.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [31] Positive solutions for a nonhomogeneous Schrodinger-Poisson system
    Zhang, Jing
    Niu, Rui
    Han, Xiumei
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1201 - 1222
  • [32] ON A CLASS OF ELLIPTIC SYSTEM OF SCHRODINGER-POISSON TYPE
    Ferreira, Lucas C. F.
    Medeiros, Everaldo S.
    Montenegro, Marcelo
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 97 (03) : 301 - 314
  • [33] Schrodinger-Poisson system with steep potential well
    Jiang, Yongsheng
    Zhou, Huan-Song
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (03) : 582 - 608
  • [34] POSITIVE SOLUTIONS FOR A NONLINEAR SCHRODINGER-POISSON SYSTEM
    Wang, Chunhua
    Yang, Jing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5461 - 5504
  • [35] Schrodinger-Poisson system with potential of critical growth
    Hassani, Abdessamad
    Iskafi, Khalid
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (04)
  • [36] On a Schrodinger-Poisson system with singularity and critical nonlinearities
    Cai, Zhipeng
    Lei, Chunyu
    Chu, Changmu
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [37] Spectral Element Method for the Schrodinger-Poisson System
    Cheng, Candong
    Liu, Qing Huo
    Lee, Joon-Ho
    Massoud, Hisham Z.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2004, 3 (3-4) : 417 - 421
  • [38] Note on a Schrodinger-Poisson system in a bounded domain
    Pisani, Lorenzo
    Siciliano, Gaetano
    APPLIED MATHEMATICS LETTERS, 2008, 21 (05) : 521 - 528
  • [39] On the Schrodinger-Poisson system with (p, q)-Laplacian
    Song, Yueqiang
    Huo, Yuanyuan
    Repovs, Dusan D.
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [40] Multiple solutions for a quasilinear Schrodinger-Poisson system
    Zhang, Jing
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)