Geometric optics for one-dimensional Schrodinger-Poisson system

被引:0
|
作者
Zhifei Zhang [1 ]
Qionglei Chen
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Schrodinger-Poisson; geometric optics; Lagrangian integral;
D O I
10.1007/s11401-004-0074-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a family of Schrodinger-Poisson system in one dimension, whose initial data oscillates so that a caustic appears. By using the Lagrangian integrals, the authors obtain a uniform description of the solution outside the caustic, and near the caustic.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [21] Parallel solution of a Schrodinger-Poisson system
    Rauber, T
    Runger, G
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1995, 919 : 697 - 702
  • [22] A quantum transmitting Schrodinger-Poisson system
    Baro, M
    Kaiser, HC
    Neidhardt, H
    Rehberg, J
    REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (03) : 281 - 330
  • [23] Schrodinger-Poisson system with singular potential
    Jiang, Yongsheng
    Zhou, Huan-Song
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 411 - 438
  • [24] L(2) solutions to the Schrodinger-Poisson system
    Castella, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (12): : 1243 - 1248
  • [25] On the Schrodinger-Poisson system with a general indefinite nonlinearity
    Huang, Lirong
    Rocha, Eugenio M.
    Chen, Jianqing
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 28 : 1 - 19
  • [26] The planar Schrodinger-Poisson system with a positive potential
    Azzollini, Antonio
    NONLINEARITY, 2021, 34 (08) : 5799 - 5820
  • [27] On the asymptotically cubic fractional Schrodinger-Poisson system
    Wang, Wenbo
    Yu, Yuanyang
    Li, Yongkun
    APPLICABLE ANALYSIS, 2021, 100 (04) : 695 - 713
  • [28] Solutions of a Schrodinger-Poisson system with combined nonlinearities
    Sun, Mingzheng
    Su, Jiabao
    Zhao, Leiga
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) : 385 - 403
  • [29] The Schrodinger-Poisson system with p-Laplacian
    Du, Yao
    Su, Jiabao
    Wang, Cong
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [30] On Schrodinger-Poisson Systems
    Ambrosetti, Antonio
    MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 257 - 274