Geometric optics for one-dimensional Schrodinger-Poisson system

被引:0
|
作者
Zhifei Zhang [1 ]
Qionglei Chen
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Schrodinger-Poisson; geometric optics; Lagrangian integral;
D O I
10.1007/s11401-004-0074-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a family of Schrodinger-Poisson system in one dimension, whose initial data oscillates so that a caustic appears. By using the Lagrangian integrals, the authors obtain a uniform description of the solution outside the caustic, and near the caustic.
引用
收藏
页码:353 / 362
页数:10
相关论文
共 50 条
  • [1] Geometric Optics for One-Dimensional Schrodinger-Poisson System
    Zhifei ZHANG Qionglei CHEN School of Mathematical Sciences
    Chinese Annals of Mathematics, 2006, (03) : 353 - 362
  • [2] On a one-dimensional Schrodinger-Poisson scattering model
    BenAbdallah, N
    Degond, P
    Markowich, PA
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1997, 48 (01): : 135 - 155
  • [3] STABLE SOLITARY WAVES FOR ONE-DIMENSIONAL SCHRODINGER-POISSON SYSTEMS
    Zhang, Guoqing
    Zhang, Weiguo
    Liu, Sanyang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [4] Geometric Optics for One-Dimensional Schrödinger-Poisson System
    Zhifei Zhang
    Qionglei Chen
    Chinese Annals of Mathematics, Series B, 2006, 27 : 353 - 362
  • [5] About a one-dimensional stationary Schrodinger-Poisson system with Kohn-Sham potential
    Kaiser, HC
    Rehberg, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (03): : 423 - 458
  • [6] Convergence and instability of iterative procedures on the one-dimensional Schrodinger-Poisson problem
    Duarte, C. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) : 1501 - 1509
  • [7] THE ONE-DIMENSIONAL WIGNER-POISSON PROBLEM AND ITS RELATION TO THE SCHRODINGER-POISSON PROBLEM
    STEINRUCK, H
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) : 957 - 972
  • [8] Computer-assisted Existence Proofs for One-dimensional Schrodinger-Poisson Systems
    Wunderlich, Jonathan
    Plum, Michael
    ACTA CYBERNETICA, 2020, 24 (03): : 373 - 391
  • [9] High density limit of the stationary one dimensional Schrodinger-Poisson system
    El Hajj, Raymond
    Ben Abdallah, Naoufel
    MULTISCALE MODELING & SIMULATION, 2008, 7 (01): : 124 - 146
  • [10] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197