Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity

被引:19
|
作者
Yang, Minbo [1 ]
Santos, Carlos Alberto [2 ]
Zhou, Jiazheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Quasilinear Schrodinger equation; least energy nodal solutions; supercritical growth; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1142/S0219199718500268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrodinger equation in H-1(R-N): -Delta u vertical bar k/2u Delta u2 vertical bar V(x)u = g(u)vertical bar lambda vertical bar u vertical bar(p-2)u, where N >= 3, V (x) is a positive continuous potential, g(u) is of subcritical growth, p >= 2* = 2N/(N - 2) and lambda, k are two non- negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and L-infinity-estimates.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Ground State Solutions for a Quasilinear Schrodinger Equation
    Zhang, Jian
    Lin, Xiaoyan
    Tang, Xianhua
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [32] Multiple Solutions for a Quasilinear Schrodinger Equation on RN
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) : 91 - 117
  • [33] Multiplicity of Solutions for a Sublinear Quasilinear Schrodinger Equation
    Bao, Gui
    Cheng, Tingzhi
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (05): : 1249 - 1258
  • [34] Positive solutions for a critical quasilinear Schrodinger equation
    Xue, Liang
    Xu, Jiafa
    O'Regan, Donal
    AIMS MATHEMATICS, 2023, 8 (08): : 19566 - 19581
  • [35] MULTIPLE SOLITON SOLUTIONS FOR A QUASILINEAR SCHRODINGER EQUATION
    Liu, Jiayin
    Liu, Duchao
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 75 - 90
  • [36] Solutions for a quasilinear Schrodinger equation: a dual approach
    Colin, M
    Jeanjean, L
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) : 213 - 226
  • [37] Nodal soliton solutions for quasilinear Schrodinger equations with critical exponent
    Deng, Yinbin
    Peng, Shuangjie
    Wang, Jixiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [38] Positive solutions of a Schrodinger equation with critical nonlinearity
    Clapp, M
    Ding, YH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 592 - 605
  • [39] Asymptotic behavior of solutions of quasilinear parabolic equations with supercritical nonlinearity
    Suzuki, R
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (01) : 150 - 181
  • [40] Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation
    Kamchatnov, AM
    Kraenkel, RA
    Umarov, BA
    PHYSICAL REVIEW E, 2002, 66 (03):