Least action nodal solutions for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity

被引:19
|
作者
Yang, Minbo [1 ]
Santos, Carlos Alberto [2 ]
Zhou, Jiazheng [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Quasilinear Schrodinger equation; least energy nodal solutions; supercritical growth; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1142/S0219199718500268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of least action nodal solutions for the quasilinear defocusing Schrodinger equation in H-1(R-N): -Delta u vertical bar k/2u Delta u2 vertical bar V(x)u = g(u)vertical bar lambda vertical bar u vertical bar(p-2)u, where N >= 3, V (x) is a positive continuous potential, g(u) is of subcritical growth, p >= 2* = 2N/(N - 2) and lambda, k are two non- negative parameters. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of least action nodal solution via deformation flow arguments and L-infinity-estimates.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] NONRADIAL SOLUTIONS OF QUASILINEAR SCHRODINGER EQUATIONS WITH GENERAL NONLINEARITY
    Jing, Yongtao
    Liu, Haidong
    Liu, Zhaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (02): : 781 - 800
  • [22] Existence of solutions to quasilinear Schrodinger equations with exponential nonlinearity
    Severo, Uberlandio B.
    Ribeiro, Bruno H. C.
    Germano, Diogo de S.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024 (14) : 1 - 14
  • [23] Nodal soliton solutions for generalized quasilinear Schrodinger equations
    Deng, Yinbin
    Peng, Shuangjie
    Wang, Jixiu
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (05)
  • [24] Multiple nonsymmetric nodal solutions for quasilinear Schrodinger system
    Chen, Jianqing
    Zhang, Qian
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (57) : 1 - 14
  • [25] Normalized solutions of quasilinear Schrodinger equations with a general nonlinearity
    Deng, Ting
    Squassina, Marco
    Zhang, Jianjun
    Zhong, Xuexiu
    ASYMPTOTIC ANALYSIS, 2024, 140 (1-2) : 5 - 24
  • [26] Positive solutions for a class of supercritical quasilinear Schrodinger equations
    Deng, Yin
    Zhang, Xiaojing
    Jia, Gao
    AIMS MATHEMATICS, 2022, 7 (04): : 6565 - 6582
  • [27] Ground state solutions for the quasilinear Schrodinger equation
    Guo, Yuxia
    Tang, Zhongwei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3235 - 3248
  • [28] Existence of positive solutions for a quasilinear Schrodinger equation
    Chu, Changmu
    Liu, Haidong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 118 - 127
  • [29] Vortex Solutions of the Defocusing Discrete Nonlinear Schrodinger Equation
    Cuevas, J.
    James, G.
    Kevrekidis, P. G.
    Law, K. J. H.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 135 - +
  • [30] Nonexistence of stable solutions for quasilinear Schrodinger equation
    Chen, Lijuan
    Chen, Caisheng
    Yang, Hongwei
    Song, Hongxue
    BOUNDARY VALUE PROBLEMS, 2018,