Prime geodesic theorem for the Picard manifold

被引:5
|
作者
Balkanova, Olga [1 ]
Frolenkov, Dmitry [2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Chalmers Tvargata 3, S-41296 Gothenburg, Sweden
[2] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
关键词
Spectral exponential sum; Prime geodesic theorem; Picard manifold; FORMULA; SUBCONVEXITY;
D O I
10.1016/j.aim.2020.107377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma = PSL(2,Z vertical bar i vertical bar) be the Picard group and H-3 be the three-dimensional hyperbolic space. We study the Prime Geodesic Theorem for the quotient Gamma\H-3, called the Picard manifold, obtaining an error term of size O(X3/2+theta/2+epsilon), where theta denotes a subconvexity exponent for quadratic Dirichlet L-functions defined over Gaussian integers. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条
  • [21] A Prime geodesic theorem for higher rank spaces
    Deitmar, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (06) : 1238 - 1266
  • [22] Prime geodesic theorem for compact Riemann surfaces
    Gušić, Dženan
    International Journal of Circuits, Systems and Signal Processing, 2019, 13 : 747 - 753
  • [23] A prime geodesic theorem for SL4
    Anton Deitmar
    Mark Pavey
    Annals of Global Analysis and Geometry, 2008, 33 : 161 - 205
  • [24] Gallagherian Prime Geodesic Theorem in Higher Dimensions
    Avdispahic, Muharem
    Sabanac, Zenan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 3019 - 3026
  • [25] THE PRIME GEODESIC THEOREM AND BOUNDS FOR CHARACTER SUMS
    Kaneko, Ikuya
    arXiv,
  • [26] Sums of Kloosterman sums in the prime geodesic theorem
    Balkanova, Olga
    Frolenkov, Dmitry
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (02): : 649 - 674
  • [27] A PRIME GEODESIC THEOREM FOR HIGHER RANK BUILDINGS
    Deitmar, Anton
    McCallum, Rupert
    KODAI MATHEMATICAL JOURNAL, 2018, 41 (02) : 440 - 455
  • [28] A Prime geodesic theorem for higher rank spaces
    A. Deitmar
    Geometric & Functional Analysis GAFA, 2004, 14 : 1238 - 1266
  • [29] A prime geodesic theorem for SL3(Z)
    Deitmar, Anton
    Spilioti, Polyxeni
    Gon, Yasuro
    FORUM MATHEMATICUM, 2019, 31 (05) : 1179 - 1201
  • [30] A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces
    Avdispahic, M.
    ANALYSIS MATHEMATICA, 2020, 46 (01) : 25 - 38