Prime geodesic theorem for the Picard manifold

被引:5
|
作者
Balkanova, Olga [1 ]
Frolenkov, Dmitry [2 ]
机构
[1] Chalmers Univ Technol, Dept Math Sci, Chalmers Tvargata 3, S-41296 Gothenburg, Sweden
[2] Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
关键词
Spectral exponential sum; Prime geodesic theorem; Picard manifold; FORMULA; SUBCONVEXITY;
D O I
10.1016/j.aim.2020.107377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma = PSL(2,Z vertical bar i vertical bar) be the Picard group and H-3 be the three-dimensional hyperbolic space. We study the Prime Geodesic Theorem for the quotient Gamma\H-3, called the Picard manifold, obtaining an error term of size O(X3/2+theta/2+epsilon), where theta denotes a subconvexity exponent for quadratic Dirichlet L-functions defined over Gaussian integers. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:42
相关论文
共 50 条
  • [11] ON THE ERROR TERM IN THE PRIME GEODESIC THEOREM
    Avdispahic, Muharem
    Gusic, Dzenan
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (02) : 367 - 372
  • [12] The prime geodesic theorem in square mean
    Balog, Antal
    Biro, Andras
    Harcos, Gergely
    Maga, Peter
    JOURNAL OF NUMBER THEORY, 2019, 198 : 239 - 249
  • [13] The Prime Geodesic Theorem in Arithmetic Progressions
    Chatzakos, Dimitrios
    Harcos, Gergely
    Kaneko, Ikuya
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (20) : 13180 - 13190
  • [14] Prime geodesic theorem for the modular surface
    Avdispahic, Muharem
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (02): : 505 - 509
  • [15] AN EXISTENCE THEOREM OF A CLOSED GEODESIC ON A MANIFOLD WITH BOUNDARY
    SCOLOZZI, D
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (03): : 451 - 457
  • [16] Gallagherian Prime Geodesic Theorem in Higher Dimensions
    Muharem Avdispahić
    Zenan Šabanac
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3019 - 3026
  • [17] On the prime geodesic theorem for SL4
    Gušić D.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 42 - 48
  • [18] Prime geodesic theorem for arithmetic compact surfaces
    Koyama, SY
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1998, 1998 (08) : 383 - 388
  • [19] On Koyama's refinement of the prime geodesic theorem
    Avdispahic, Muharem
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2018, 94 (03) : 21 - 24
  • [20] A prime geodesic theorem for SL4
    Deitmar, Anton
    Pavey, Mark
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (02) : 161 - 205