Performance improvement in collaborative recommendation using multi-layer perceptron

被引:0
|
作者
Kim, Myting Won [1 ]
Kim, Eun Ju [1 ]
机构
[1] Soongsil Univ, Sch Comp, Seoul, South Korea
关键词
recommendation system; collaborative filtering; personalization; multi-layer perceptron;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommendation is to offer information which fits user's interests and tastes to provide better services and to reduce information overload. It recently draws attention upon Internet users and information providers. Collaborative filtering is one of the widely used methods for recommendation. It recommends an item to a user based on the reference users' preferences for the target item or the target user's preferences for the reference items. In this paper, we propose a neural network based collaborative filtering method. Our method builds a model by learning correlation between users or items using a multi-layer perceptron. We also investigate integration of diverse information to solve the sparsity problem and selecting the reference users or items based on similarity to improve performance. We finally demonstrate that our method outperforms the existing methods through experiments using the EachMovie data.
引用
收藏
页码:350 / 359
页数:10
相关论文
共 50 条
  • [31] Multi-layer perceptron mapping on a SIMD architecture
    Vitabile, S
    Gentile, A
    Dammone, GB
    Sorbello, F
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 667 - 675
  • [32] Input Relevance in Multi-Layer Perceptron for Fundraising
    Barro, Diana
    Barzanti, Luca
    Corazza, Marco
    Nardon, Martina
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF2024, 2024, : 31 - 36
  • [33] On the evaluation of relevance learning by a multi-layer perceptron
    Suzuki, K
    Hashimoto, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 3204 - 3209
  • [34] Efficient Object Segmentation and Recognition Using Multi-Layer Perceptron Networks
    Naseer, Aysha
    Almujally, Nouf Abdullah
    Alotaibi, Saud S.
    Alazeb, Abdulwahab
    Park, Jeongmin
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 1381 - 1398
  • [35] Extraction of voltage harmonics using multi-layer perceptron neural network
    Mehmet Tümay
    M. Emin Meral
    K. Çağatay Bayindir
    Neural Computing and Applications, 2008, 17 : 585 - 593
  • [36] Determining Optimal Multi-layer Perceptron Structure Using Linear Regression
    Tej, Mohamed Lafif
    Holban, Stefan
    BUSINESS INFORMATION SYSTEMS, PT I, 2019, 353 : 232 - 246
  • [37] Facial Age Estimation using Zernike Moments and Multi-Layer Perceptron
    Malek, Mohsen Eshghan
    Azimifar, Zohreh
    Boostani, Reza
    2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [38] Image-Based Malware Classification Using Multi-layer Perceptron
    Ouahab, Ikram Ben Abdel
    Elaachak, Lotfi
    Bouhorma, Mohammed
    NETWORKING, INTELLIGENT SYSTEMS AND SECURITY, 2022, 237 : 453 - 464
  • [39] Exploratory Test Oracle using Multi-Layer Perceptron Neural Network
    Makondo, Wellington
    Nallanthighal, Raghava
    Mapanga, Innocent
    Kadebu, Prudence
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 1166 - 1171
  • [40] Prediction of credit delinquents using locally transductive multi-layer perceptron
    Heo, Hyunjin
    Park, Hyejin
    Kim, Namhyoung
    Lee, Jaewook
    NEUROCOMPUTING, 2009, 73 (1-3) : 169 - 175