Input Relevance in Multi-Layer Perceptron for Fundraising

被引:0
|
作者
Barro, Diana [1 ]
Barzanti, Luca [2 ]
Corazza, Marco [1 ]
Nardon, Martina [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
[2] Univ Bologna, Dept Math, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Multi-Layer Perceptron; Input relevance; Garson's indicator; Fundraising Management;
D O I
10.1007/978-3-031-64273-9_6
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson's indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors' behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [1] On the evaluation of relevance learning by a multi-layer perceptron
    Suzuki, K
    Hashimoto, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 3204 - 3209
  • [2] Sparse Bayesian learning and the relevance multi-layer perceptron network
    Cawley, GC
    Talbot, NLC
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1320 - 1324
  • [3] Encoding a Categorical Independent Variable for Input to TerrSet's Multi-Layer Perceptron
    Evenden, Emily
    Pontius, Robert Gilmore J. R.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [4] Graph Attention Multi-Layer Perceptron
    Zhang, Wentao
    Yin, Ziqi
    Sheng, Zeang
    Li, Yang
    Ouyang, Wen
    Li, Xiaosen
    Tao, Yangyu
    Yang, Zhi
    Cui, Bin
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4560 - 4570
  • [5] Symbolic representation of a multi-layer perceptron
    Mouria-Beji, F
    ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 205 - 208
  • [6] Local design for multi-layer perceptron
    Xu, Li
    Zidonghua Xuebao/Acta Automatica Sinica, 1997, 23 (03): : 325 - 331
  • [7] Tighter Guarantees for the Compressive Multi-layer Perceptron
    Kaban, Ata
    Thummanusarn, Yamonporn
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2018), 2018, 11324 : 388 - 400
  • [8] Multi-Layer Perceptron with Pulse Glial Chain
    Ikuta, Chihiro
    Uwate, Yoko
    Nishio, Yoshifumi
    Yang, Guoan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (03): : 742 - 755
  • [9] Multi-Layer Perceptron for Sleep Stage Classification
    Yulita, Intan Nurma
    Rosadi, Rudi
    Purwani, Sri
    Suryani, Mira
    2ND INTERNATIONAL CONFERENCE ON STATISTICS, MATHEMATICS, TEACHING, AND RESEARCH 2017, 2018, 1028
  • [10] Multi-layer perceptron mapping on a SIMD architecture
    Vitabile, S
    Gentile, A
    Dammone, GB
    Sorbello, F
    NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 667 - 675