Input Relevance in Multi-Layer Perceptron for Fundraising

被引:0
|
作者
Barro, Diana [1 ]
Barzanti, Luca [2 ]
Corazza, Marco [1 ]
Nardon, Martina [1 ]
机构
[1] Ca Foscari Univ Venice, Dept Econ, Cannaregio 873, I-30121 Venice, Italy
[2] Univ Bologna, Dept Math, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Multi-Layer Perceptron; Input relevance; Garson's indicator; Fundraising Management;
D O I
10.1007/978-3-031-64273-9_6
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson's indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors' behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.
引用
收藏
页码:31 / 36
页数:6
相关论文
共 50 条
  • [31] Many-objective training of a multi-layer perceptron
    Koeppen, Mario
    Yoshida, Kaori
    NEURAL NETWORK WORLD, 2007, 17 (06) : 627 - 637
  • [32] A Stochastic Computational Multi-Layer Perceptron with Backward Propagation
    Liu, Yidong
    Liu, Siting
    Wang, Yanzhi
    Lombardi, Fabrizio
    Han, Jie
    IEEE TRANSACTIONS ON COMPUTERS, 2018, 67 (09) : 1273 - 1286
  • [33] A novel scheme to determine the architecture of a Multi-layer Perceptron
    Chintalapudi, KK
    Pal, NR
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 2297 - 2302
  • [34] Prediction of zenith tropospheric delay by multi-layer perceptron
    Katsougiannopoulos, S.
    Pikridas, C.
    JOURNAL OF APPLIED GEODESY, 2009, 3 (04) : 223 - 229
  • [35] Multi-layer perceptron based modelling of nonlinear systems
    Lightbody, G
    Irwin, GW
    FUZZY SETS AND SYSTEMS, 1996, 79 (01) : 93 - 112
  • [36] Impact of Input Feature Selection on Groundwater Level Prediction From a Multi-Layer Perceptron Neural Network
    Sahu, Reetik Kumar
    Muller, Juliane
    Park, Jangho
    Varadharajan, Charuleka
    Arora, Bhavna
    Faybishenko, Boris
    Agarwal, Deborah
    FRONTIERS IN WATER, 2020, 2
  • [37] A generative learning algorithm that uses structural knowledge of the input domain yields a better Multi-layer perceptron
    Perez-Minana, E
    4TH NEURAL COMPUTATION AND PSYCHOLOGY WORKSHOP, LONDON, 9-11 APRIL 1997: CONNECTIONIST REPRESENTATIONS, 1997, : 45 - 57
  • [38] Object Segmentation by Spraying Robot Based on Multi-Layer Perceptron
    Zhu, Mingxiang
    Zhang, Guangming
    Zhang, Lingxiu
    Han, Weisong
    Shi, Zhihan
    Lv, Xiaodong
    ENERGIES, 2023, 16 (01)
  • [39] Recognition of Libras Static Alphabet with Myo™ and Multi-Layer Perceptron
    Alves Mendes Junior, Jose Jair
    Freitas, Melissa La Banca
    Stevan, Sergio Luiz, Jr.
    Pichorim, Sergio Francisco
    XXVI BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2018, VOL. 2, 2019, 70 (02): : 413 - 419
  • [40] Speech Emotion Recognition Using Multi-Layer Perceptron Classifier
    Yuan, Xiaochen
    Wong, Wai Pang
    Lam, Chan Tong
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 644 - 648