Disconnected Synchronized Regions of Complex Dynamical Networks

被引:58
|
作者
Duan, Zhisheng [1 ]
Chen, Guanrong [1 ]
Huang, Lin [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Aerosp Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix pencil; network synchronization; synchronized region; ROBUST H-2; STABILITY;
D O I
10.1109/TAC.2008.2009690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note addresses the synchronized region problem, which is converted to a more convenient matrix stability problem, for complex dynamical networks. For any natural number n, the existence of a network with n disconnected synchronized regions is theoretically proved and numerically demonstrated. This shows the intrinsic complexity of the network synchronization problem. Convexity characteristic of stability for relevant matrix pencils is further discussed. A smooth Chua's circuit network is finally discussed as an example for illustration.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 50 条
  • [41] On Submodularity and Controllability in Complex Dynamical Networks
    Summers, Tyler H.
    Cortesi, Fabrizio L.
    Lygeros, John
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2016, 3 (01): : 91 - 101
  • [42] Multiscale dynamical embeddings of complex networks
    Schaub, Michael T.
    Delvenne, Jean-Charles
    Lambiotte, Renaud
    Barahona, Mauricio
    PHYSICAL REVIEW E, 2019, 99 (06)
  • [43] Dynamical robustness of complex biological networks
    Graduate School of Engineering, The University of Tokyo, Tokyo
    113-8656, Japan
    不详
    113-8656, Japan
    不详
    153-8505, Japan
    Mathematical Approaches to Biological Systems: Networks, Oscillations, and Collective Motions, (29-53):
  • [44] Dynamical and spectral properties of complex networks
    Almendral, Juan A.
    Diaz-Guilera, Albert
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [45] Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay
    Tang, Longkun
    Wu, Xiaoqun
    Lu, Jinhu
    Lu, Jun-an
    CHAOS, 2015, 25 (03)
  • [46] Abstract Voronoi Diagrams with Disconnected Regions
    Bohler, Cecilia
    Klein, Rolf
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 306 - 316
  • [47] Remarks on the entanglement entropy for disconnected regions
    Casini, H.
    Huerta, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (03):
  • [48] Holographic entanglement entropy for disconnected regions
    Hubeny, Veronika E.
    Rangamani, Mukund
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):
  • [49] Finite-size scaling of synchronized oscillation on complex networks
    Hong, Hyunsuk
    Park, Hyunggyu
    Tang, Lei-Han
    PHYSICAL REVIEW E, 2007, 76 (06)
  • [50] Synchronization in complex dynamical networks coupled with complex chaotic system
    Wei, Qiang
    Xie, Cheng-Jun
    Wang, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (06):