Disconnected Synchronized Regions of Complex Dynamical Networks

被引:58
|
作者
Duan, Zhisheng [1 ]
Chen, Guanrong [1 ]
Huang, Lin [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Aerosp Engn, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix pencil; network synchronization; synchronized region; ROBUST H-2; STABILITY;
D O I
10.1109/TAC.2008.2009690
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This technical note addresses the synchronized region problem, which is converted to a more convenient matrix stability problem, for complex dynamical networks. For any natural number n, the existence of a network with n disconnected synchronized regions is theoretically proved and numerically demonstrated. This shows the intrinsic complexity of the network synchronization problem. Convexity characteristic of stability for relevant matrix pencils is further discussed. A smooth Chua's circuit network is finally discussed as an example for illustration.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 50 条
  • [21] Isoperimetric inequality for disconnected regions
    Sanki, Bidyut
    Vadnere, Arya
    GEOMETRIAE DEDICATA, 2025, 219 (01)
  • [22] Recovery of synchronized oscillations on multiplex networks by tuning dynamical time scales
    Vadakkan, Aiwin T.
    Verma, Umesh Kumar
    Ambika, G.
    PHYSICS LETTERS A, 2024, 525
  • [23] On synchronous preference of complex dynamical networks
    Fan, J
    Li, X
    Wang, XF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 355 (2-4) : 657 - 666
  • [24] Synchronization for complex dynamical Lurie networks
    张晓娇
    崔宝同
    ChinesePhysicsB, 2013, 22 (10) : 158 - 165
  • [25] Transition to chaos in complex dynamical networks
    Li, X
    Chen, GR
    Ko, KT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 367 - 378
  • [26] Synchronization for complex dynamical Lurie networks
    Zhang Xiao-Jiao
    Cui Bao-Tong
    CHINESE PHYSICS B, 2013, 22 (10)
  • [27] Evolution of microscopic and mesoscopic synchronized patterns in complex networks
    Gomez-Gardenes, Jesus
    Moreno, Yamir
    Arenas, Alex
    CHAOS, 2011, 21 (01)
  • [28] Dynamical properties of transportation on complex networks
    Shen, Bo
    Gao, Zi-You
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (5-6) : 1352 - 1360
  • [29] Optimal Synehronizability of Complex Dynamical Networks
    Dai Kun
    Wang Xiaofan
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 7, 2008, : 338 - 342
  • [30] Antisynchronization of Two Complex Dynamical Networks
    Banerjee, Ranjib
    Grosu, Ioan
    Dana, Syamal K.
    COMPLEX SCIENCES, PT 1, 2009, 4 : 1072 - +