Charge qubits and limitations of electrostatic quantum gates

被引:9
|
作者
Weichselbaum, A [1 ]
Ulloa, SE [1 ]
机构
[1] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.032328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the characteristics of purely electrostatic interactions with external gates in constructing full single-qubit manipulations. The quantum bit is naturally encoded in the spatial wave function of the electron system. Single-electron transistor arrays based on quantum dots or insulating interfaces typically allow for electrostatic controls where the interisland tunneling is considered constant, e.g., determined by the thickness of an insulating layer. A representative array of 3x3 quantum dots with two mobile electrons is analyzed using a Hubbard Hamiltonian and a capacitance matrix formalism. Our study shows that it is easy to realize the first quantum gate for single-qubit operations, but that a second quantum gate comes only at the cost of compromising the low-energy two-level system that encodes the qubit. We use perturbative arguments and the Feshbach formalism to show that this compromising of the two-level system is a rather general feature for electrostatically interacting qubits and is not just related to the specific details of the system chosen. We show further that full implementation requires tunable tunneling or external magnetic fields.
引用
收藏
页码:032328 / 1
页数:8
相关论文
共 50 条
  • [41] Compiling Conditional Quantum Gates without Using Helper Qubits
    Huang, Keli
    Palsberg, Jens
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2024, 8 (PLDI):
  • [42] High-fidelity gates in quantum dot spin qubits
    Koh, Teck Seng
    Coppersmith, S. N.
    Friesen, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) : 19695 - 19700
  • [43] High-fidelity composite quantum gates for Raman qubits
    Torosov, Boyan T.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [44] Fast quantum logic gates with trapped-ion qubits
    Schafer, V. M.
    Ballance, C. J.
    Thirumalai, K.
    Stephenson, L. J.
    Ballance, T. G.
    Steane, A. M.
    Lucas, D. M.
    NATURE, 2018, 555 (7694) : 75 - +
  • [45] A modular design of molecular qubits to implement universal quantum gates
    Ferrando-Soria, Jesus
    Pineda, Eufemio Moreno
    Chiesa, Alessandro
    Fernandez, Antonio
    Magee, Samantha A.
    Carretta, Stefano
    Santini, Paolo
    Vitorica-Yrezabal, Inigo J.
    Tuna, Floriana
    Timco, Grigore A.
    McInnes, Eric J. L.
    Winpenny, Richard E. P.
    NATURE COMMUNICATIONS, 2016, 7
  • [46] Variable electrostatic transformer: Controllable coupling of two charge qubits
    Averin, DV
    Bruder, C
    PHYSICAL REVIEW LETTERS, 2003, 91 (05) : 570031 - 570034
  • [47] Quantum and tunneling capacitance in charge and spin qubits
    Mizuta, R.
    Otxoa, R. M.
    Betz, A. C.
    Gonzalez-Zalba, M. F.
    PHYSICAL REVIEW B, 2017, 95 (04)
  • [48] Quantum oscillations in two coupled charge qubits
    Yu. A. Pashkin
    T. Yamamoto
    O. Astafiev
    Y. Nakamura
    D. V. Averin
    J. S. Tsai
    Nature, 2003, 421 : 823 - 826
  • [49] Swap Test with Quantum Dot Charge Qubits
    Li, Y-D
    Barraza, N.
    Alvarado Barrios, G.
    Solano, E.
    Albarran-Arriagada, F.
    PHYSICAL REVIEW APPLIED, 2022, 18 (01):
  • [50] Scalable quantum computing with Josephson charge qubits
    You, JQ
    Tsai, JS
    Nori, F
    PHYSICAL REVIEW LETTERS, 2002, 89 (19)