Charge qubits and limitations of electrostatic quantum gates

被引:9
|
作者
Weichselbaum, A [1 ]
Ulloa, SE [1 ]
机构
[1] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.032328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the characteristics of purely electrostatic interactions with external gates in constructing full single-qubit manipulations. The quantum bit is naturally encoded in the spatial wave function of the electron system. Single-electron transistor arrays based on quantum dots or insulating interfaces typically allow for electrostatic controls where the interisland tunneling is considered constant, e.g., determined by the thickness of an insulating layer. A representative array of 3x3 quantum dots with two mobile electrons is analyzed using a Hubbard Hamiltonian and a capacitance matrix formalism. Our study shows that it is easy to realize the first quantum gate for single-qubit operations, but that a second quantum gate comes only at the cost of compromising the low-energy two-level system that encodes the qubit. We use perturbative arguments and the Feshbach formalism to show that this compromising of the two-level system is a rather general feature for electrostatically interacting qubits and is not just related to the specific details of the system chosen. We show further that full implementation requires tunable tunneling or external magnetic fields.
引用
收藏
页码:032328 / 1
页数:8
相关论文
共 50 条
  • [31] Qubits' mapping and routing for NISQ on variability of quantum gates
    Li, Ze-Tong
    Meng, Fan-Xu
    Zhang, Zai-Chen
    Yu, Xu-Tao
    QUANTUM INFORMATION PROCESSING, 2020, 19 (10)
  • [32] A quantum fluctuation description of charge qubits
    Benatti, F.
    Carollo, F.
    Floreanini, R.
    Narnhofer, H.
    Valiera, F.
    NEW JOURNAL OF PHYSICS, 2024, 26 (01):
  • [33] Charge-noise tolerant exchange gates of singlet-triplet qubits in asymmetric double quantum dots
    Hiltunen, Tuukka
    Bluhm, Hendrik
    Mehl, Sebastian
    Harju, Ari
    PHYSICAL REVIEW B, 2015, 91 (07):
  • [34] From Two Types of Electrostatic Position-Dependent Semiconductor Qubits to Quantum Universal Gates and Hybrid Semiconductor-Superconducting Quantum Computer
    Pomorski, Krzysztof
    Giounanlis, Panagiotis
    Blokhina, Elena
    Leipold, Dirk
    Peczkowski, Pawel
    Staszewski, Robert Bogdan
    SUPERCONDUCTIVITY AND PARTICLE ACCELERATORS 2018, 2019, 11054
  • [35] The Quantum Socket and DemuXYZ-Based Gates with Superconducting Qubits
    Béjanin, J.H.
    Earnest, C.T.
    Mariantoni, M.
    arXiv, 2022,
  • [36] A modular design of molecular qubits to implement universal quantum gates
    Jesús Ferrando-Soria
    Eufemio Moreno Pineda
    Alessandro Chiesa
    Antonio Fernandez
    Samantha A. Magee
    Stefano Carretta
    Paolo Santini
    Iñigo J. Vitorica-Yrezabal
    Floriana Tuna
    Grigore A. Timco
    Eric J.L. McInnes
    Richard E.P. Winpenny
    Nature Communications, 7
  • [37] Simulations of superconducting quantum gates by digital flux tuner for qubits
    Geng, Xiao
    He, Kaiyong
    Liu, Jianshe
    Chen, Wei
    CHINESE PHYSICS B, 2024, 33 (07)
  • [38] Approximate supervised learning of quantum gates via ancillary qubits
    Innocenti, Luca
    Banchi, Leonardo
    Bose, Sougato
    Ferraro, Alessandro
    Paternostro, Mauro
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [39] Calibrating quantum gates up to 52 qubits in a superconducting processor
    Fan, Daojin
    Liu, Guoding
    Li, Shaowei
    Gong, Ming
    Wu, Dachao
    Zhang, Yiming
    Zha, Chen
    Chen, Fusheng
    Cao, Sirui
    Ye, Yangsen
    Zhu, Qingling
    Ying, Chong
    Guo, Shaojun
    Qian, Haoran
    Wu, Yulin
    Deng, Hui
    Wu, Gang
    Peng, Cheng-Zhi
    Ma, Xiongfeng
    Zhu, Xiaobo
    Pan, Jian-Wei
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [40] Fast quantum logic gates with trapped-ion qubits
    V. M. Schäfer
    C. J. Ballance
    K. Thirumalai
    L. J. Stephenson
    T. G. Ballance
    A. M. Steane
    D. M. Lucas
    Nature, 2018, 555 : 75 - 78