Charge qubits and limitations of electrostatic quantum gates

被引:9
|
作者
Weichselbaum, A [1 ]
Ulloa, SE [1 ]
机构
[1] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA
来源
PHYSICAL REVIEW A | 2004年 / 70卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.70.032328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the characteristics of purely electrostatic interactions with external gates in constructing full single-qubit manipulations. The quantum bit is naturally encoded in the spatial wave function of the electron system. Single-electron transistor arrays based on quantum dots or insulating interfaces typically allow for electrostatic controls where the interisland tunneling is considered constant, e.g., determined by the thickness of an insulating layer. A representative array of 3x3 quantum dots with two mobile electrons is analyzed using a Hubbard Hamiltonian and a capacitance matrix formalism. Our study shows that it is easy to realize the first quantum gate for single-qubit operations, but that a second quantum gate comes only at the cost of compromising the low-energy two-level system that encodes the qubit. We use perturbative arguments and the Feshbach formalism to show that this compromising of the two-level system is a rather general feature for electrostatically interacting qubits and is not just related to the specific details of the system chosen. We show further that full implementation requires tunable tunneling or external magnetic fields.
引用
收藏
页码:032328 / 1
页数:8
相关论文
共 50 条
  • [1] Charge qubits and limitations of electrostatic quantum gates
    Weichselbaum, A
    Ulloa, SE
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2005, 26 (1-4): : 342 - 346
  • [2] Robust optimal quantum gates for josephson charge qubits
    Montangero, Simone
    Calarco, Tommaso
    Fazio, Rosario
    PHYSICAL REVIEW LETTERS, 2007, 99 (17)
  • [3] Quantum operations on charge qubits with the electrostatic control in semiconductor cavities
    Tsukanov A.V.
    Kateev I.Yu.
    Russian Microelectronics, 2013, 42 (4) : 197 - 211
  • [4] SQUID qubits and quantum gates
    Han, SY
    Rouse, R
    DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER, 2001, 182 : 317 - 328
  • [5] Quantum logic gates generated by SC-charge qubits coupled to a resonator
    Obada, A-S F.
    Hessian, H. A.
    Mohamed, A-B A.
    Homid, Ali H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (48)
  • [6] Robust Quantum Gates in Decoherence-Free Subspaces with Josephson Charge Qubits
    Feng, Zhi-Bo
    Yan, Run-Ying
    Zhang, Chunli
    Fan, Libo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2282 - 2290
  • [7] Robust Quantum Gates in Decoherence-Free Subspaces with Josephson Charge Qubits
    Zhi-Bo Feng
    Run-Ying Yan
    Chunli Zhang
    Libo Fan
    International Journal of Theoretical Physics, 2012, 51 : 2282 - 2290
  • [8] Implementation of Geometric Quantum Gates on Microwave-Driven Semiconductor Charge Qubits
    Zhang, Chengxian
    Chen, Tao
    Wang, Xin
    Xue, Zheng-Yuan
    ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (08)
  • [9] Intrinsic phonon decoherence and quantum gates in coupled lateral quantum-dot charge qubits
    Storcz, MJ
    Hartmann, U
    Kohler, S
    Wilhelm, FK
    PHYSICAL REVIEW B, 2005, 72 (23)
  • [10] Geometric quantum gates with superconducting qubits
    Kamleitner, I.
    Solinas, P.
    Mueller, C.
    Shnirman, A.
    Mottonen, M.
    PHYSICAL REVIEW B, 2011, 83 (21):