T-COLORINGS, DIVISIBILITY AND THE CIRCULAR CHROMATIC NUMBER

被引:0
|
作者
Janczewski, Robert [1 ]
Trzaskowska, Anna Maria [2 ]
Turowski, Krzysztof [3 ]
机构
[1] Gdansk Univ Technol, Dept Algorithms & Syst Modelling, Narutowicza 11-12, Gdansk, Poland
[2] Gdansk Univ Technol, Dept Appl Informat Management, Narutowicza 11-12, Gdansk, Poland
[3] Purdue Univ, Ctr Sci Informat, W Lafayette, IN 47907 USA
关键词
T-coloring; circular chromatic number; FREQUENCY ASSIGNMENT; SPAN;
D O I
10.7151/dmgt.2198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 is an element of T, and G be a graph. In the paper we study relations between the T-edge spans esp(T)(G) and esp(d circle dot T)(G), where d is a positive integer and d circle dot T = {0 <= t <= d (max T + 1) : d vertical bar t double right arrow t/d is an element of T}. We show that esp(d circle dot T)(G) = desp(T) (G) - r, where r, 0 <= r <= d -1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that esp(d circle dot{0})(G) = inverted right perpendiculard(chi c(G) - 1)inverted left perpendicular, where chi(c)(G) is the circular chromatic number of G. This result allows us to formulate several interesting conclusions that include a new formula for the circular chromatic number chi(c)(G) = 1 + inf {esp(d circle dot{0})(G)/d: d >= 1} and a proof that the formula for the T-edge span of powers of cycles, stated as conjecture in [Y. Zhao, W. He and R. Cao, The edge span of T -coloring on graph C-n(d), Appl. Math. Lett. 19 (2006) 647-651], is true.
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [41] Circular chromatic number of Kneser graphs
    Hajiabolhassan, H
    Zhu, X
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 299 - 303
  • [42] Circular chromatic number and Mycielski graphs
    Liu, HM
    ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) : 314 - 320
  • [43] Circular chromatic number and Mycielski construction
    Hajiabolhassan, H
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2003, 44 (02) : 106 - 115
  • [44] Circular chromatic number of signed graphs
    Naserasr, Reza
    Wang, Zhouningxin
    Zhu, Xuding
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [45] Circular chromatic number and mycielski graphs
    Fan, GH
    COMBINATORICA, 2004, 24 (01) : 127 - 135
  • [46] K3-WORM COLORINGS OF GRAPHS: LOWER CHROMATIC NUMBER AND GAPS IN THE CHROMATIC SPECTRUM
    Bujtas, Csilla
    Tuza, Zsolt
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (03) : 759 - 772
  • [47] Maximizing the number of x-colorings of 4-chromatic graphs
    Erey, Aysel
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1419 - 1431
  • [48] Fractional chromatic number and circular chromatic number for distance graphs with large clique size
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2004, 47 (02) : 129 - 146
  • [49] CIRCULAR CHROMATIC NUMBER OF SOME SPECIAL GRAPHS
    Gao, Wei
    Zhang, Yungang
    Yan, Chengchao
    PROCEEDINGS OF THE 2011 3RD INTERNATIONAL CONFERENCE ON FUTURE COMPUTER AND COMMUNICATION (ICFCC 2011), 2011, : 311 - +
  • [50] Circular chromatic number and a generalization of the construction of Mycielski
    Lam, PCB
    Lin, WS
    Gu, GH
    Song, ZM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 89 (02) : 195 - 205