T-COLORINGS, DIVISIBILITY AND THE CIRCULAR CHROMATIC NUMBER

被引:0
|
作者
Janczewski, Robert [1 ]
Trzaskowska, Anna Maria [2 ]
Turowski, Krzysztof [3 ]
机构
[1] Gdansk Univ Technol, Dept Algorithms & Syst Modelling, Narutowicza 11-12, Gdansk, Poland
[2] Gdansk Univ Technol, Dept Appl Informat Management, Narutowicza 11-12, Gdansk, Poland
[3] Purdue Univ, Ctr Sci Informat, W Lafayette, IN 47907 USA
关键词
T-coloring; circular chromatic number; FREQUENCY ASSIGNMENT; SPAN;
D O I
10.7151/dmgt.2198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 is an element of T, and G be a graph. In the paper we study relations between the T-edge spans esp(T)(G) and esp(d circle dot T)(G), where d is a positive integer and d circle dot T = {0 <= t <= d (max T + 1) : d vertical bar t double right arrow t/d is an element of T}. We show that esp(d circle dot T)(G) = desp(T) (G) - r, where r, 0 <= r <= d -1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that esp(d circle dot{0})(G) = inverted right perpendiculard(chi c(G) - 1)inverted left perpendicular, where chi(c)(G) is the circular chromatic number of G. This result allows us to formulate several interesting conclusions that include a new formula for the circular chromatic number chi(c)(G) = 1 + inf {esp(d circle dot{0})(G)/d: d >= 1} and a proof that the formula for the T-edge span of powers of cycles, stated as conjecture in [Y. Zhao, W. He and R. Cao, The edge span of T -coloring on graph C-n(d), Appl. Math. Lett. 19 (2006) 647-651], is true.
引用
收藏
页码:441 / 450
页数:10
相关论文
共 50 条
  • [21] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [22] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [23] DP-colorings of graphs with high chromatic number
    Bernshteyn, Anton
    Kostochka, Alexandr
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 65 : 122 - 129
  • [24] Circular chromatic number of subgraphs
    Hajiabolhassan, H
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2003, 44 (02) : 95 - 105
  • [25] Circular chromatic number of hypergraphs
    Eslahchi, C
    Rafiey, A
    ARS COMBINATORIA, 2004, 73 : 239 - 246
  • [26] Circular chromatic number: a survey
    Zhu, XD
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 371 - 410
  • [27] The circular chromatic number of a digraph
    Bokal, D
    Fijavz, G
    Juvan, M
    Kayll, PM
    Mohar, B
    JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 227 - 240
  • [28] On the complexity of the circular chromatic number
    Hatami, H
    Tusserkani, R
    JOURNAL OF GRAPH THEORY, 2004, 47 (03) : 226 - 230
  • [29] The circular chromatic number of hypergraphs
    Brewster, Richard C.
    MacGillivray, Gary
    Shepherd, Laura
    DISCRETE MATHEMATICS, 2009, 309 (18) : 5757 - 5765
  • [30] On circular chromatic number and chromatic number of some generalized Kneser Hypergraphs
    Alishahi, Meysam
    Tahmasebi, Samaneh
    ARS COMBINATORIA, 2020, 150 : 241 - 259