Higher Order Transverse Bundles and Riemannian Foliations

被引:2
|
作者
Popescu, Paul P. [1 ]
机构
[1] Univ Craiova, Dept Appl Math, Craiova, Romania
关键词
Riemannian foliation; (Higher order) Transverse bundle; Lifted foliation; Transverse lagrangian; TANGENT BUNDLES; LAGRANGIANS; SPACES;
D O I
10.1007/s00009-013-0326-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to prove that each of the following conditions is equivalent to that the foliation is riemannian: (1) the lifted foliation on the r-transverse bundle is riemannian for an r a parts per thousand yen 1; (2) the foliation on a slashed is riemannian and vertically exact for an r a parts per thousand yen 1; (3) there is a positively admissible transverse lagrangian on a , for an r a parts per thousand yen 1. Analogous results have been proved previously for normal jet vector bundles.
引用
收藏
页码:799 / 811
页数:13
相关论文
共 50 条
  • [31] Higher order mechanics on graded bundles
    Bruce, Andrew James
    Grabowska, Katarzyna
    Grabowski, Janusz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (20) : 1 - 32
  • [32] Connections on higher order frame bundles
    Elzanowski, M
    Prishepionok, S
    NEW DEVELOPMENTS IN DIFFERENTIAL GEOMETRY, 1996, 350 : 131 - 142
  • [33] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Aydin GEZER
    Abdullah MAGDEN
    Chinese Annals of Mathematics,Series B, 2017, (04) : 985 - 998
  • [34] Geometry of the Second-Order Tangent Bundles of Riemannian Manifolds
    Gezer, Aydin
    Magden, Abdullah
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (04) : 985 - 998
  • [35] Geometry of the second-order tangent bundles of Riemannian manifolds
    Aydin Gezer
    Abdullah Magden
    Chinese Annals of Mathematics, Series B, 2017, 38 : 985 - 998
  • [36] TRANSVERSALLY SYMMETRICAL RIEMANNIAN FOLIATIONS
    TONDEUR, P
    VANHECKE, L
    TOHOKU MATHEMATICAL JOURNAL, 1990, 42 (03) : 307 - 317
  • [37] TOTALLY UMBILIC RIEMANNIAN FOLIATIONS
    CAIRNS, G
    MICHIGAN MATHEMATICAL JOURNAL, 1990, 37 (01) : 145 - 159
  • [38] Cohomological tautness for Riemannian foliations
    J. I. Royo Prieto
    M. Saralegi-Aranguren
    R. Wolak
    Russian Journal of Mathematical Physics, 2009, 16 : 450 - 466
  • [39] Riemannian foliations on contractible manifolds
    Florit, Luis
    Goertsches, Oliver
    Lytchak, Alexander
    Toeben, Dirk
    MUENSTER JOURNAL OF MATHEMATICS, 2015, 8 (01): : 1 - 16
  • [40] Riemannian Foliations and Eigenvalue Comparison
    Jeffrey M. Lee
    Ken Richardson
    Annals of Global Analysis and Geometry, 1998, 16 : 497 - 525