Higher Order Transverse Bundles and Riemannian Foliations

被引:2
|
作者
Popescu, Paul P. [1 ]
机构
[1] Univ Craiova, Dept Appl Math, Craiova, Romania
关键词
Riemannian foliation; (Higher order) Transverse bundle; Lifted foliation; Transverse lagrangian; TANGENT BUNDLES; LAGRANGIANS; SPACES;
D O I
10.1007/s00009-013-0326-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to prove that each of the following conditions is equivalent to that the foliation is riemannian: (1) the lifted foliation on the r-transverse bundle is riemannian for an r a parts per thousand yen 1; (2) the foliation on a slashed is riemannian and vertically exact for an r a parts per thousand yen 1; (3) there is a positively admissible transverse lagrangian on a , for an r a parts per thousand yen 1. Analogous results have been proved previously for normal jet vector bundles.
引用
收藏
页码:799 / 811
页数:13
相关论文
共 50 条
  • [21] DESINGULARIZATION OF RIEMANNIAN FOLIATIONS
    MOLINO, P
    AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (05) : 1091 - 1106
  • [22] Riemannian foliations of spheres
    Lytchak, Alexander
    Wilking, Burkhard
    GEOMETRY & TOPOLOGY, 2016, 20 (03) : 1257 - 1274
  • [23] Riemannian foliations and tautness
    Tondeur, Philippe
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (01):
  • [24] COMPARING RIEMANNIAN FOLIATIONS WITH TRANSVERSALLY SYMMETRIC FOLIATIONS
    KAMBER, FW
    RUH, EA
    TONDEUR, P
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1988, 27 (03) : 461 - 475
  • [25] Riemannian foliations and tautness
    Tondeur, Philippe
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (03):
  • [26] Harmonic and Riemannian foliations
    Eells, J
    Verjovsky, A
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 1998, 4 (01): : 1 - 12
  • [27] DUALITY FOR RIEMANNIAN FOLIATIONS
    KAMBER, FW
    TONDEUR, P
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 609 - 618
  • [28] ON TRANSVERSE FOLIATIONS
    TAMURA, I
    SATO, A
    PUBLICATIONS MATHEMATIQUES, 1981, (54): : 205 - 235
  • [29] BUNDLES AND FINITE FOLIATIONS
    COOPER, D
    LONG, DD
    REID, AW
    INVENTIONES MATHEMATICAE, 1994, 118 (02) : 255 - 283
  • [30] Transverse Weitzenbock formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves
    Baudoin, Fabrice
    Kim, Bumsik
    Wang, Jing
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (05) : 913 - 937