Schrodinger-Maxwell systems on compact Riemannian manifolds

被引:2
|
作者
Farkas, Csaba [1 ,2 ]
机构
[1] Sapientia Univ, Dept Math & Comp Sci, Targu Mures, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
关键词
Schrodinger-Maxwell systems; critical points; compact Riemannian manifolds; KLEIN-GORDON-MAXWELL; LOW-ENERGY SOLUTIONS; CRITICAL-POINTS; SOLITARY WAVES; EQUATION; MULTIPLICITY; EXISTENCE; THEOREM;
D O I
10.14232/ejqtde.2018.1.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are focusing to the following Schrodinger-Maxwell system: {-Delta(g)u + beta(x)u + eu phi = Psi(lambda,x)f(u) in M, (SM Psi(lambda,.)e) -Delta(g)phi + phi = qu(2) in M, where (M, g) is a 3-dimensional compact Riemannian manifold without boundary, e, q > 0 are positive numbers, f : R -> R is a continuous function, beta is an element of C-infinity(M) and Psi is an element of C-infinity(R+ x M) are positive functions. By various variational approaches, existence of multiple solutions of the problem (SM Psi(lambda,.)e) is established.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [41] The Combined Schrodinger-Maxwell Problem in the Electronic/Electromagnetic Characterization of Nanodevices
    Pierantoni, Luca
    Mencarelli, Davide
    Rozzi, Tullio
    TIME DOMAIN METHODS IN ELECTRODYNAMICS: A TRIBUTE TO WOLFGANG J.R. HOEFER, 2008, 121 : 105 - 133
  • [42] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRODINGER-MAXWELL EQUATIONS
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (03): : 857 - 872
  • [43] Existence and Regularity of Positive Solutions for Schrodinger-Maxwell System with Singularity
    Sbai, Abdelaaziz
    El Hadfi, Youssef
    El Ouardy, Mounim
    ACTA APPLICANDAE MATHEMATICAE, 2024, 193 (01)
  • [44] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791
  • [45] Consensus on compact Riemannian manifolds
    Chen, Sheng
    Zhao, Lindu
    Zhang, Weigong
    Shi, Peng
    INFORMATION SCIENCES, 2014, 268 : 220 - 230
  • [46] Vorticity on the compact Riemannian manifolds
    Abbasvand, Mahsa
    Ghahremani-Gol, Hajar
    2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 46 - 47
  • [48] The growth in time of higher Sobolev norms of solutions to Schrodinger equations on compact Riemannian manifolds
    Zhong, Sijia
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (02) : 359 - 376
  • [49] Classification of positive solutions for a static Schrodinger-Maxwell equation with fractional Laplacian
    Xu, Deyun
    Lei, Yutian
    APPLIED MATHEMATICS LETTERS, 2015, 43 : 85 - 89
  • [50] Extremum Seeking Control for Nonlinear Systems on Compact Riemannian Manifolds
    Taringoo, Farzin
    Nesic, Dragan
    Tan, Ying
    Dower, Peter M.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2667 - 2672