Schrodinger-Maxwell systems on compact Riemannian manifolds

被引:2
|
作者
Farkas, Csaba [1 ,2 ]
机构
[1] Sapientia Univ, Dept Math & Comp Sci, Targu Mures, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
关键词
Schrodinger-Maxwell systems; critical points; compact Riemannian manifolds; KLEIN-GORDON-MAXWELL; LOW-ENERGY SOLUTIONS; CRITICAL-POINTS; SOLITARY WAVES; EQUATION; MULTIPLICITY; EXISTENCE; THEOREM;
D O I
10.14232/ejqtde.2018.1.64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are focusing to the following Schrodinger-Maxwell system: {-Delta(g)u + beta(x)u + eu phi = Psi(lambda,x)f(u) in M, (SM Psi(lambda,.)e) -Delta(g)phi + phi = qu(2) in M, where (M, g) is a 3-dimensional compact Riemannian manifold without boundary, e, q > 0 are positive numbers, f : R -> R is a continuous function, beta is an element of C-infinity(M) and Psi is an element of C-infinity(R+ x M) are positive functions. By various variational approaches, existence of multiple solutions of the problem (SM Psi(lambda,.)e) is established.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Infinitely many solutions for a class of sublinear Schrodinger-Maxwell equations
    Sun, Juntao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (02) : 514 - 522
  • [32] Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations
    D'Aprile, T
    Mugnai, D
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 : 893 - 906
  • [33] Canonical symplectic structure and structure-preserving geometric algorithms for Schrodinger-Maxwell systems
    Chen, Qiang
    Qin, Hong
    Liu, Jian
    Xiao, Jianyuan
    Zhang, Ruili
    He, Yang
    Wang, Yulei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 349 : 441 - 452
  • [34] Representation of solutions to Schrodinger stochastic equations by functional integrals on compact Riemannian manifolds
    Davies, I
    Smolyanov, OG
    Truman, A
    DOKLADY MATHEMATICS, 2000, 62 (01) : 4 - 7
  • [35] The Existence of Infinitely Many Solutions for the Nonlinear Schrodinger-Maxwell Equations
    Huang, Wen-nian
    Tang, X. H.
    RESULTS IN MATHEMATICS, 2014, 65 (1-2) : 223 - 234
  • [36] Harmonic Analysis in Gaseous Helium by Coherent Schrodinger-Maxwell Method
    Zhang, Lei
    Fan, Zhenhong
    Chen, Rushan
    IEEE ACCESS, 2019, 7 : 127631 - 127638
  • [37] Existence and multiplicity of solutions for a class of sublinear Schrodinger-Maxwell equations
    Lv, Ying
    BOUNDARY VALUE PROBLEMS, 2013,
  • [38] A refined stability result for standing waves of the Schrodinger-Maxwell system
    Colin, Mathieu
    Watanabe, Tatsuya
    NONLINEARITY, 2019, 32 (10) : 3695 - 3714
  • [39] Solitary waves for non-homogeneous Schrodinger-Maxwell system
    Yang, Minbo
    Li, Baorong
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (01) : 66 - 70
  • [40] SEMICLASSICAL SOLUTIONS FOR THE NONLINEAR SCHRODINGER-MAXWELL EQUATIONS WITH CRITICAL NONLINEARITY
    Huang, Wen-nian
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1203 - 1217