Zero-Hopf bifurcation in continuous dynamical systems using multiple scale approach

被引:3
|
作者
Al-khedhairi, A. [1 ]
Askar, S. S. [1 ,2 ]
Elsonbaty, A. [3 ,4 ]
Elsadany, A. A. [3 ,5 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[4] Mansoura Univ, Fac Engn, Dept Engn Math & Phys, Mansoura 35516, Egypt
[5] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia 41522, Egypt
关键词
Zero-Hopf bifurcation; Multiparameters bifurcation; Nayfeh multiple-scale method; EXTENDED MELNIKOV METHOD; CHAOTIC DYNAMICS; HIDDEN; MOTION;
D O I
10.1016/j.asej.2020.01.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An efficient scheme for studying multiparametric Zero-Hopf bifurcation is provided to extend A. Nayfeh multiple-time scale technique of codimension-one bifurcations. The suggested approach treats the cases of high codimension bifurcations successfully. Compared to the well-known averaging method, center manifold reduction method and projection method, the present approach is more simple and can be applied with less computational cost and high efficiency to a wider class of problems involving the cases where purely imaginary, zeros and negative real eigenvalues coexist simultaneously. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1377 / 1385
页数:9
相关论文
共 50 条
  • [41] Zero-Hopf bifurcations in Yu-Wang type systems
    Bengochea, Abimael
    Garcia-Chung, Angel
    Perez-Chavela, Ernesto
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (03): : 413 - 421
  • [42] N-Dimensional Zero-Hopf Bifurcation of Polynomial Differential Systems via Averaging Theory of Second Order
    S. Kassa
    J. Llibre
    A. Makhlouf
    Journal of Dynamical and Control Systems, 2021, 27 : 283 - 291
  • [43] Slow–Fast Dynamics in a Non-smooth Vector Field with Zero-Hopf Bifurcation
    Shi Hua
    Qinsheng Bi
    Journal of Vibration Engineering & Technologies, 2023, 11 : 473 - 490
  • [44] Zero-Hopf bifurcation of a cubic jerk system via the third order averaging method
    Chen, Yu-Ming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3595 - 3604
  • [45] Zero-Hopf bifurcation analysis of a Kaldor-Kalecki model of business cycle with delay
    Wu, Xiaoqin P.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (02) : 736 - 754
  • [46] HOPF AND ZERO-HOPF BIFURCATIONS FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS IN R3
    Lu, Jingping
    Wang, Chunyong
    Huang, Wentao
    Wang, Qinlong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 354 - 372
  • [47] Zero-Hopf bifurcation in the Volterra-Gause system of predator-prey type
    Ginoux, Jean-Marc
    Llibre, Jaume
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7858 - 7866
  • [48] Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback
    Jason Bramburger
    Benoit Dionne
    Victor G. LeBlanc
    Nonlinear Dynamics, 2014, 78 : 2959 - 2973
  • [49] Controlling Hopf bifurcation of nonlinear dynamical systems
    Li, CP
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 891 - 898
  • [50] 4-dimensional zero-Hopf bifurcation for polynomial differentials systems with cubic homogeneous nonlinearities via averaging theory
    Feddaoui, Amina
    Llibre, Jaume
    Makhlouf, Amar
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2020, 10 (04) : 321 - 328