Zero-Hopf bifurcation in continuous dynamical systems using multiple scale approach

被引:3
|
作者
Al-khedhairi, A. [1 ]
Askar, S. S. [1 ,2 ]
Elsonbaty, A. [3 ,4 ]
Elsadany, A. A. [3 ,5 ]
机构
[1] King Saud Univ, Coll Sci, Dept Stat & Operat Res, POB 2455, Riyadh 11451, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[4] Mansoura Univ, Fac Engn, Dept Engn Math & Phys, Mansoura 35516, Egypt
[5] Suez Canal Univ, Fac Comp & Informat, Basic Sci Dept, Ismailia 41522, Egypt
关键词
Zero-Hopf bifurcation; Multiparameters bifurcation; Nayfeh multiple-scale method; EXTENDED MELNIKOV METHOD; CHAOTIC DYNAMICS; HIDDEN; MOTION;
D O I
10.1016/j.asej.2020.01.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An efficient scheme for studying multiparametric Zero-Hopf bifurcation is provided to extend A. Nayfeh multiple-time scale technique of codimension-one bifurcations. The suggested approach treats the cases of high codimension bifurcations successfully. Compared to the well-known averaging method, center manifold reduction method and projection method, the present approach is more simple and can be applied with less computational cost and high efficiency to a wider class of problems involving the cases where purely imaginary, zeros and negative real eigenvalues coexist simultaneously. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1377 / 1385
页数:9
相关论文
共 50 条
  • [21] On the Zero-Hopf Bifurcation of the Lotka-Volterra Systems in R3
    Han, Maoan
    Llibre, Jaume
    Tian, Yun
    MATHEMATICS, 2020, 8 (07)
  • [22] The Integrability and the Zero-Hopf Bifurcation of the Three Dimensional Lotka-Volterra Systems
    Salih, Rizgar H.
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [23] Zero-Hopf bifurcation in the FitzHugh-Nagumo system
    Euzebio, Rodrigo D.
    Llibre, Jaume
    Vidal, Claudio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) : 4289 - 4299
  • [24] Zero-Hopf bifurcation in a 3D jerk system
    Braun, Francisco
    Mereu, Ana C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [25] Bursting dynamics and the zero-Hopf bifurcation of simple jerk system
    Sun, Xi
    Yan, Shaohui
    Zhang, Yuyan
    Wang, Ertong
    Wang, Qiyu
    Gu, Binxian
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [26] On the integrability and the zero-Hopf bifurcation of a Chen–Wang differential system
    Jaume Llibre
    Regilene D. S. Oliveira
    Claudia Valls
    Nonlinear Dynamics, 2015, 80 : 353 - 361
  • [27] Zero-Hopf bifurcation and multistability coexistence on a four-neuron network model with multiple delays
    Juhong Ge
    Jian Xu
    ZhiQiang Li
    Nonlinear Dynamics, 2017, 87 : 2357 - 2366
  • [28] Zero-Hopf bifurcation and multistability coexistence on a four-neuron network model with multiple delays
    Ge, Juhong
    Xu, Jian
    Li, ZhiQiang
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2357 - 2366
  • [29] On the integrability and the zero-Hopf bifurcation of a Chen-Wang differential system
    Llibre, Jaume
    Oliveira, Regilene D. S.
    Valls, Claudia
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 353 - 361
  • [30] Zero-Hopf bifurcation analysis in delayed differential equations with two delays
    Wu, Xiaoqin P.
    Wang, Liancheng
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (03): : 1484 - 1513