On the small-time behaviour of Levy-type processes

被引:8
|
作者
Knopova, Victoria [1 ,2 ]
Schilling, Rene L. [2 ]
机构
[1] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, UA-03187 Kiev, Ukraine
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
关键词
Law of the iterated logarithm; Small-time asymptotic; Levy process; Feller process; Levy-type process; Symbol; Pseudo differential operator; Stochastic differential equation; SAMPLE PATH PROPERTIES; FELLER PROCESSES; GROWTH; LIL;
D O I
10.1016/j.spa.2014.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show some Chung-type Ern inf law of the iterated logarithm results at zero for a class of (pure-jump) Feller or Levy-type processes. This class includes all Levy processes. The norming function is given in terms of the symbol of the infinitesimal generator of the process. In the Levy case, the symbol coincides with the characteristic exponent. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2249 / 2265
页数:17
相关论文
共 50 条
  • [41] The Smile of Certain Levy-Type Models
    Jacquier, Antoine
    Lorig, Matthew
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2013, 4 (01): : 804 - 830
  • [42] A SMALL-TIME COUPLING BETWEEN Λ-COALESCENTS AND BRANCHING PROCESSES
    Berestycki, Julien
    Berestycki, Nathanael
    Limic, Vlada
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 449 - 475
  • [43] THE DIRICHLET PROBLEM FOR NONLOCAL LEVY-TYPE OPERATORS
    Rutkowski, Artur
    PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 213 - 251
  • [44] Small-time asymptotics of stopped Levy bridges and simulation schemes with controlled bias
    Figueroa-Lopez, Jose E.
    Tankov, Peter
    BERNOULLI, 2014, 20 (03) : 1126 - 1164
  • [45] INTRINSIC COMPOUND KERNEL ESTIMATES FOR THE TRANSITION PROBABILITY DENSITY OF LEVY-TYPE PROCESSES AND THEIR APPLICATIONS
    Knopova, Victoria
    Kulik, Aleksei
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2017, 37 (01): : 53 - 100
  • [46] Inference in Levy-type stochastic volatility models
    Woerner, Jeannette H. C.
    ADVANCES IN APPLIED PROBABILITY, 2007, 39 (02) : 531 - 549
  • [47] HOMOGENIZATION OF LEVY-TYPE OPERATORS WITH OSCILLATING COEFFICIENTS
    Kassmann, M.
    Piatnitski, A.
    Zhizhina, E.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 3641 - 3665
  • [48] Approximation in law of locally α-stable Levy-type processes by non-linear regressions
    Kulik, Alexei
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [49] Generalized evolutionary programming with Levy-type mutation
    Iwamatsu, M
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (1-2) : 729 - 732
  • [50] LEVY-TYPE SOLUTION FOR THE ANALYSIS OF NONUNIFORM PLATES
    LEE, SY
    LIN, SM
    COMPUTERS & STRUCTURES, 1993, 49 (06) : 931 - 939