On the small-time behaviour of Levy-type processes

被引:8
|
作者
Knopova, Victoria [1 ,2 ]
Schilling, Rene L. [2 ]
机构
[1] Natl Acad Sci Ukraine, VM Glushkov Cybernet Inst, UA-03187 Kiev, Ukraine
[2] Tech Univ Dresden, Inst Math Stochast, D-01062 Dresden, Germany
关键词
Law of the iterated logarithm; Small-time asymptotic; Levy process; Feller process; Levy-type process; Symbol; Pseudo differential operator; Stochastic differential equation; SAMPLE PATH PROPERTIES; FELLER PROCESSES; GROWTH; LIL;
D O I
10.1016/j.spa.2014.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show some Chung-type Ern inf law of the iterated logarithm results at zero for a class of (pure-jump) Feller or Levy-type processes. This class includes all Levy processes. The norming function is given in terms of the symbol of the infinitesimal generator of the process. In the Levy case, the symbol coincides with the characteristic exponent. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2249 / 2265
页数:17
相关论文
共 50 条
  • [31] Criteria for the finiteness of the strong p-variation for Levy-type processes
    Manstavicius, Martynas
    Schnurr, Alexander
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (05) : 873 - 899
  • [32] Levy Matters VI Levy-Type Processes: Moments, Construction and Heat Kernel Estimates Preface
    Kuehn, Franziska
    LEVY MATTERS VI: LEVY-TYPE PROCESSES: MOMENTS, CONSTRUCTION AND HEAT KERNEL ESTIMATES, 2017, 2187 : XI - XVII
  • [33] An optimal control problem associated with SDEs driven by Levy-type processes
    Bennett, Jonathan
    Wu, Jiang-Lun
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (03) : 471 - 494
  • [34] Levy Matters III Levy-Type Processes: Construction, Approximation and Sample Path Properties Preface
    Barndorff-Nielsen, Ole E.
    Bertoin, Jean
    Jacod, Jean
    Klueppelberg, Claudia
    LEVY MATTERS III: LEVY-TYPE PROCESSES: CONSTRUCTION, APPROXIMATION AND SAMPLE PATH PROPERTIES, 2013, 2099 : IX - +
  • [35] The small-time Chung-Wichura law for Levy processes with non-vanishing Brownian component
    Buchmann, Boris
    Maller, Ross
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 149 (1-2) : 303 - 330
  • [36] On a Small-Time Limit Behaviorof the Probability That a Levy Process Stays Positive
    Knopova, V. P.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2016, 52 (03) : 475 - 480
  • [37] Lyapunov exponents for Hamiltonian systems under small Levy-type perturbations
    Chao, Ying
    Wei, Pingyuan
    Duan, Jinqiao
    CHAOS, 2021, 31 (08)
  • [38] Small time Chung-type LIL for Levy processes
    Aurzada, Frank
    Doering, Leif
    Savov, Mladen
    BERNOULLI, 2013, 19 (01) : 115 - 136
  • [39] Multiscale exponential Levy-type models
    Lorig, Matthew
    Lozano-Carbasse, Oriol
    QUANTITATIVE FINANCE, 2015, 15 (01) : 91 - 100
  • [40] Levy Matters VI Levy-Type Processes: Moments, Construction and Heat Kernel Estimates Preface to the Series Levy Matters
    Barndorff-Nielsen, Ole E.
    Bertoin, Jean
    Jacod, Jean
    Klueppelberg, Claudia
    LEVY MATTERS VI: LEVY-TYPE PROCESSES: MOMENTS, CONSTRUCTION AND HEAT KERNEL ESTIMATES, 2017, 2187 : V - +