Distributed Stochastic AC Optimal Power Flow based on Polynomial Chaos Expansion

被引:0
|
作者
Engelmann, Alexander [1 ]
Muethlpfordt, Tillmann [1 ]
Jiang, Yuning [2 ]
Houska, Boris [2 ]
Faulwasser, Timm [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
关键词
UNCERTAINTY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed optimization methods for Optimal Power Flow (tIPE) problems are of importance in reducing coordination complexity and ensuring economic grid operation. Renewable feed -ins and demands are intrinsically uncertain and often follow non-Gaussian distributions. The present paper combines uncertainty propagation via Polynomial Chaos Expansion (PCE) with the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method to solve stochastic OPF problems with non-Gaussian uncertainties in a distributed setting. Moreover, using ALADIN and PCE we obtain fast convergence while avoiding computationally expensive sampling. A numerical example illustrates the performance of the proposed approach.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 50 条
  • [41] A Piecewise-Affine Decision Rule based Stochastic AC Optimal Power Flow Approach
    Isuru, Mohasha
    Foo, Eddy Y. S.
    Gooi, H. B.
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [42] Distributed Optimal Power Flow in Hybrid AC-DC Grids
    Meyer-Huebner, Nico
    Suriyah, Michael
    Leibfried, Thomas
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (04) : 2937 - 2946
  • [43] Stochastic Polynomial-Chaos-Based Average Modeling of Power Electronic Systems
    Su, Qianli
    Strunz, Kai
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (04) : 1167 - 1171
  • [44] General polynomial chaos in the current-voltage formulation of the optimal power flow problem
    Van Acker, Tom
    Geth, Frederik
    Koirala, Arpan
    Ergun, Hakan
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 211
  • [45] Stochastic Optimal Control using Polynomial Chaos Variational Integrators
    Boutselis, George I.
    De La Torre, Gerardo
    Theodorou, Evangelos A.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6586 - 6591
  • [46] PROBABILISTIC FLOW CALCULATION OF POWER SYSTEM CONSIDERING WIND POWER BASED ON SPARSE POLYNOMIAL CHAOS EXPANSION WITH PARTIAL LEAST SQUARES METHOD
    Dong X.
    Liang C.
    Ma X.
    Li Y.
    Yang J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 351 - 359
  • [47] Decentralized Stochastic Optimal Power Flow in Radial Networks With Distributed Generation
    Bazrafshan, Mohammadhafez
    Gatsis, Nikolaos
    IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (02) : 787 - 801
  • [48] A reduced polynomial chaos expansion method for the stochastic finite element analysis
    Pascual, B.
    Adhikari, S.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2012, 37 (03): : 319 - 340
  • [49] Optimal power flow: an introduction to predictive, distributed and stochastic control challenges
    Faulwasser, Timm
    Engelmann, Alexander
    Miihlpfordt, Tillmann
    Hagenmeyer, Veit
    AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (07) : 573 - 589
  • [50] A Fast Polynomial Chaos Expansion for Uncertainty Quantification in Stochastic Electromagnetic Problems
    Tomy, Gladwin Jos Kurupasseril
    Vinoy, Kalarickaparambil Joseph
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 2120 - 2124