Distributed Stochastic AC Optimal Power Flow based on Polynomial Chaos Expansion

被引:0
|
作者
Engelmann, Alexander [1 ]
Muethlpfordt, Tillmann [1 ]
Jiang, Yuning [2 ]
Houska, Boris [2 ]
Faulwasser, Timm [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
关键词
UNCERTAINTY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed optimization methods for Optimal Power Flow (tIPE) problems are of importance in reducing coordination complexity and ensuring economic grid operation. Renewable feed -ins and demands are intrinsically uncertain and often follow non-Gaussian distributions. The present paper combines uncertainty propagation via Polynomial Chaos Expansion (PCE) with the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method to solve stochastic OPF problems with non-Gaussian uncertainties in a distributed setting. Moreover, using ALADIN and PCE we obtain fast convergence while avoiding computationally expensive sampling. A numerical example illustrates the performance of the proposed approach.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 50 条
  • [31] Probabilistic power flow analysis based on arbitrary polynomial chaos expansion for networks with uncertain renewable sources
    Laowanitwattana, Jirasak
    Uatrongjit, Sermsak
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2018, 13 (12) : 1754 - 1759
  • [32] Probabilistic Power Flow Method Based on Arbitrary Probability Distribution Modeling and Improved Polynomial Chaos Expansion
    Li, Kemeng
    Wang, Yi
    Shan, Xin
    Lu, Juanjuan
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (18): : 167 - 176
  • [33] Probabilistic load flow calculation based on sparse polynomial chaos expansion
    Sun, Xin
    Tu, Qingrui
    Chen, Jinfu
    Zhang, Chengwen
    Duan, Xianzhong
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2018, 12 (11) : 2735 - 2744
  • [34] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Andreas Kofler
    Tijana Levajković
    Hermann Mena
    Alexander Ostermann
    Journal of Evolution Equations, 2021, 21 : 1345 - 1381
  • [35] A splitting/polynomial chaos expansion approach for stochastic evolution equations
    Kofler, Andreas
    Levajkovic, Tijana
    Mena, Hermann
    Ostermann, Alexander
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1345 - 1381
  • [36] Stochastic Finite Element Method Using Polynomial Chaos Expansion
    Zhao, W.
    Liu, J. K.
    ADVANCES IN MECHANICAL DESIGN, PTS 1 AND 2, 2011, 199-200 : 500 - +
  • [37] UNCERTAINTY QUANTIFICATION IN STOCHASTIC SYSTEMS USING POLYNOMIAL CHAOS EXPANSION
    Sepahvand, K.
    Marburg, S.
    Hardtke, H. -J.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2010, 2 (02) : 305 - 353
  • [38] A Polynomial Chaos Expansion based Building Block approach for stochastic analysis of photonic circuits
    Waqas, Abi
    Meioti, Daniele
    Manfredi, Paolo
    Grassi, Flavia
    MelIoni, Andrea
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVI, 2018, 10526
  • [39] Stochastic AC optimal power flow: A data-driven approach
    Mezghani, Ilyes
    Misra, Sidhant
    Deka, Deepjyoti
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [40] Stochastic AC Optimal Power Flow with Approximate Chance-Constraints
    Schmidli, Jeremias
    Roald, Line
    Chatzivasileiadis, Spyros
    Andersson, Goran
    2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,