Distributed Stochastic AC Optimal Power Flow based on Polynomial Chaos Expansion

被引:0
|
作者
Engelmann, Alexander [1 ]
Muethlpfordt, Tillmann [1 ]
Jiang, Yuning [2 ]
Houska, Boris [2 ]
Faulwasser, Timm [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, Karlsruhe, Germany
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
关键词
UNCERTAINTY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Distributed optimization methods for Optimal Power Flow (tIPE) problems are of importance in reducing coordination complexity and ensuring economic grid operation. Renewable feed -ins and demands are intrinsically uncertain and often follow non-Gaussian distributions. The present paper combines uncertainty propagation via Polynomial Chaos Expansion (PCE) with the Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN) method to solve stochastic OPF problems with non-Gaussian uncertainties in a distributed setting. Moreover, using ALADIN and PCE we obtain fast convergence while avoiding computationally expensive sampling. A numerical example illustrates the performance of the proposed approach.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 50 条
  • [1] Solving Stochastic AC Power Flow via Polynomial Chaos Expansion
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Hagenmeyer, Veit
    2016 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2016,
  • [2] Chance-Constrained AC Optimal Power Flow: A Polynomial Chaos Approach
    Muhlpfordt, Tillmann
    Roald, Line
    Hagenmeyer, Veit
    Faulwasser, Timm
    Misra, Sidhant
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2019, 34 (06) : 4806 - 4816
  • [3] Holomorphic Embedding Probabilistic Power Flow Calculation Method for AC/DC System Based on Polynomial Chaos Expansion
    Li, Xue
    Fu, Yunyue
    Jiang, Tao
    Li, Guoqing
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (18): : 177 - 188
  • [4] Stochastic PEEC Method Based on Polynomial Chaos Expansion
    Torchio, R.
    Di Rienzo, L.
    Codecasa, L.
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [5] On polynomial real-time control policies in stochastic AC optimal power flow
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Hagenmeyer, Veit
    Roald, Line
    Misra, Sidhant
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [6] Stochastic Power Flow Simulation Platform based on Extendable Arbitrary Polynomial Chaos
    Iwamura, Kazuaki
    Kanezaki, Tsubasa
    Maekawa, Motoshi
    Sakamoto, Daiki
    Minakuchi, Sho
    Nakanishi, Yosuke
    18TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, PMAPS 2024, 2024, : 97 - 102
  • [7] Scalable Probabilistic Optimal Power Flow for High Renewables Using Lite Polynomial Chaos Expansion
    Ly, Sel
    Pareek, Parikshit
    Nguyen, Hung D.
    IEEE SYSTEMS JOURNAL, 2023, 17 (02): : 2282 - 2293
  • [8] Solving Optimal Power Flow with non-Gaussian Uncertainties via Polynomial Chaos Expansion
    Muehlpfordt, Tillmann
    Faulwasser, Timm
    Roald, Line
    Hagenmeyer, Veit
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [9] Optimal Adaptive Power Flow Linearizations: Expected Error Minimization using Polynomial Chaos Expansion
    Milhlpfordt, Tillmann
    Hagenmeyer, Veit
    Molzahn, Daniel K.
    Misra, Sidhant
    2019 IEEE MILAN POWERTECH, 2019,
  • [10] Stochastic Partial Inductance for the Power Integrity Analysis by Polynomial Chaos Expansion
    Qiu, Haimi
    Jiang, Lijun
    Ruehli, Albert
    2019 12TH INTERNATIONAL WORKSHOP ON THE ELECTROMAGNETIC COMPATIBILITY OF INTEGRATED CIRCUITS (EMC COMPO 2019), 2019, : 132 - 134