The common invariant subspace problem: an approach via Grobner bases

被引:13
|
作者
Arapura, D
Peterson, C [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
eigenvector; invariant subspace; Grassmann variety; Grobner basis; algorithm;
D O I
10.1016/j.laa.2003.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n x n matrix. It is a relatively simple process to construct a homogeneous ideal (generated by quadrics) whose associated projective variety parametrizes the one-dimensional invariant subspaces of A. Given a finite collection of n x n matrices, one can similarly construct a homogeneous ideal (again generated by quadrics) whose associated projective variety parametrizes the one-dimensional subspaces which are invariant subspaces for every member of the collection. Grobner basis techniques then provide a finite, rational algorithm to determine how many points are on this variety. In other words, a finite, rational algorithm is given to determine both the existence and quantity of common one-dimensional invariant subspaces to a set of matrices. This is then extended, for each d, to an algorithm to determine both the existence and quantity of common d-dimensional invariant subspaces to a set of matrices. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [11] The Invariant Subspace Problem via Composition Operators-redux
    Shapiro, Joel H.
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 519 - 534
  • [12] An alternative approach to comprehensive Grobner bases
    Suzuki, A
    Sato, Y
    JOURNAL OF SYMBOLIC COMPUTATION, 2003, 36 (3-4) : 649 - 667
  • [13] Grobner bases for problem solving in multidimensional systems
    Charoenlarpnopparut, C
    Bose, NK
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2001, 12 (3-4) : 365 - 376
  • [14] ON THE INVARIANT SUBSPACE PROBLEM FOR CONTRACTIONS
    CHEVREAU, B
    PEARCY, CM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (15): : 735 - 738
  • [15] A Note on the Invariant Subspace Problem
    Kim, Hyoung Joon
    Lee, Woo Young
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (04)
  • [16] ON THE INVARIANT SUBSPACE PROBLEM FOR CONTRACTIONS
    BROWN, S
    CHEVREAU, B
    PEARCY, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (01): : 9 - 12
  • [17] A SOLUTION TO THE INVARIANT SUBSPACE PROBLEM
    READ, CJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1984, 16 (JUL) : 337 - 401
  • [18] Taylor and Lyubeznik resolutions via Grobner bases
    Seiler, WM
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (06) : 597 - 608
  • [19] Multiplication in the cohomology of Grassmannians via Grobner bases
    Petrovic, Zoran Z.
    Prvulovic, Branislav I.
    Radovanovic, Marko
    JOURNAL OF ALGEBRA, 2015, 438 : 60 - 84
  • [20] A HYBRID GROBNER BASES APPROACH TO COMPUTING POWER INTEGRAL BASES
    Robertson, L.
    Russell, R.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 427 - 437