Taylor and Lyubeznik resolutions via Grobner bases

被引:3
|
作者
Seiler, WM [1 ]
机构
[1] Univ Mannheim, Lehrstuhl Math 1, D-68131 Mannheim, Germany
关键词
D O I
10.1006/jsco.2002.0573
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Taylor presented an explicit resolution for arbitrary monomial ideals. Later, Lyubeznik found that a subcomplex already defines a resolution. We show that the Taylor resolution may be obtained by repeated application of the Schreyer Theorem from the theory of Grobner bases, whereas the Lyubeznik resolution is a consequence of Buchberger's chain criterion. Finally, we relate Froberg's contracting homotopy for the Taylor complex to normal forms with respect to our Grobner bases and use it to derive a splitting homotopy that leads to the Lyubeznik complex. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:597 / 608
页数:12
相关论文
共 50 条
  • [1] Noncommutative Grobner bases, and projective resolutions
    Green, EL
    COMPUTATIONAL METHODS FOR REPRESENTATIONS OF GROUPS AND ALGEBRAS, 1999, 173 : 29 - 60
  • [2] Grobner bases via linkage
    Gorla, E.
    Migiore, J. C.
    Nagel, U.
    JOURNAL OF ALGEBRA, 2013, 384 : 110 - 134
  • [3] Castelnuovo theory via Grobner bases
    Petrakiev, Ivan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 619 : 49 - 73
  • [4] Multiplicative bases, Grobner bases, and right Grobner bases
    Green, EL
    JOURNAL OF SYMBOLIC COMPUTATION, 2000, 29 (4-5) : 601 - 623
  • [5] LYUBEZNIK RESOLUTIONS AND THE ARITHMETICAL RANK OF MONOMIAL IDEALS
    Kimura, Kyouko
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (11) : 3627 - 3635
  • [6] Multiplication in the cohomology of Grassmannians via Grobner bases
    Petrovic, Zoran Z.
    Prvulovic, Branislav I.
    Radovanovic, Marko
    JOURNAL OF ALGEBRA, 2015, 438 : 60 - 84
  • [7] QUILLEN HOMOLOGY FOR OPERADS VIA GROBNER BASES
    Dotsenko, Vladimir
    Khoroshkin, Anton
    DOCUMENTA MATHEMATICA, 2013, 18 : 707 - 747
  • [8] Constraint-based reasoning via Grobner bases
    Lakmazaheri, S
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 1997, 11 (01): : 5 - 15
  • [9] ON THE JACOBIAN CONJECTURE - A NEW APPROACH VIA GROBNER BASES
    ABHYANKAR, SS
    LI, W
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 61 (03) : 211 - 222
  • [10] Constraint-based reasoning via Grobner Bases
    Lakmazaheri, Sivand
    Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1997, 11 (01): : 5 - 15