Collaborative Filtering Recommender System: Overview and Challenges

被引:8
|
作者
Al-Bashiri, Hael [1 ]
Abdulgabber, Mansoor Abdullateef [1 ]
Romli, Awanis [1 ]
Hujainah, Fadhl [1 ]
机构
[1] Univ Malaysia Pahang, Fac Comp Syst & Software Engn, Kuantan, Malaysia
关键词
Recommendation System; Collaborative Filtering; Sparsity; Scalability;
D O I
10.1166/asl.2017.10020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is to present an overview of Collaborative Filtering (CF) recommender system and show the major CF challenges. In general, the recommendation systems are the best way to help users to overcome the information overload issue. The CF approach is one of the most widely used and most successful methods in the recommendation system, such as e-commerce. This paper introduced a brief description about recommender's approaches which are: content-Based, collaborative filtering and hybrid approach. Next, defined the main challenges which have clearly impact on the performance and accuracy of CF recommender system. The major finding of this paper is the CF main problems: Data sparsity, Cold-star, and Scalability. By presenting of these challenges the quality of recommendations can be improved by proposing new methods. The paper ends with conclusion summarizes the limitations of the existing methods and recommendations.
引用
收藏
页码:9045 / 9049
页数:5
相关论文
共 50 条
  • [41] Eco-Design Based on Collaborative Filtering Recommender System
    Al-Bashiri, Hael
    Romli, Awanis
    Abdulgabber, Mansoor Abdullateef
    Fakhreldin, Mohammad Adam Ibrahim
    Majid, Mazlina Abdul
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7703 - 7706
  • [42] Framework for Smoothing-Based Collaborative Filtering Recommender System
    Lee, Ingyu
    PROCEEDINGS OF THE 50TH ANNUAL ASSOCIATION FOR COMPUTING MACHINERY SOUTHEAST CONFERENCE, 2012,
  • [43] Research Paper Recommender System Evaluation Using Collaborative Filtering
    Haruna, Khalid
    Ismail, Maizatul Akmar
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974
  • [44] Hybrid Recommender System based on Fuzzy Clustering and Collaborative Filtering
    Verma, Sumit Kumar
    Mittal, Namita
    Agarwal, Basant
    2013 4TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER & COMMUNICATION TECHNOLOGY (ICCCT), 2013, : 116 - 120
  • [45] Optimizing collaborative filtering recommender systems
    Min, SH
    Han, I
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 313 - 319
  • [46] A collaborative filtering recommender systems: Survey
    Aljunid, Mohammed Fadhel
    Manjaiah, D. H.
    Hooshmand, Mohammad Kazim
    Ali, Wasim A.
    Shetty, Amrithkala M.
    Alzoubah, Sadiq Qaid
    NEUROCOMPUTING, 2025, 617
  • [47] Collaborative filtering recommender systems taxonomy
    Harris Papadakis
    Antonis Papagrigoriou
    Costas Panagiotakis
    Eleftherios Kosmas
    Paraskevi Fragopoulou
    Knowledge and Information Systems, 2022, 64 : 35 - 74
  • [48] An improvement to collaborative filtering for recommender systems
    Weng, Li-Tung
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings, 2006, : 792 - 795
  • [49] A framework for collaborative filtering recommender systems
    Bobadilla, Jesus
    Hernando, Antonio
    Ortega, Fernando
    Bernal, Jesus
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14609 - 14623
  • [50] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565