Collaborative Filtering Recommender System: Overview and Challenges

被引:8
|
作者
Al-Bashiri, Hael [1 ]
Abdulgabber, Mansoor Abdullateef [1 ]
Romli, Awanis [1 ]
Hujainah, Fadhl [1 ]
机构
[1] Univ Malaysia Pahang, Fac Comp Syst & Software Engn, Kuantan, Malaysia
关键词
Recommendation System; Collaborative Filtering; Sparsity; Scalability;
D O I
10.1166/asl.2017.10020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is to present an overview of Collaborative Filtering (CF) recommender system and show the major CF challenges. In general, the recommendation systems are the best way to help users to overcome the information overload issue. The CF approach is one of the most widely used and most successful methods in the recommendation system, such as e-commerce. This paper introduced a brief description about recommender's approaches which are: content-Based, collaborative filtering and hybrid approach. Next, defined the main challenges which have clearly impact on the performance and accuracy of CF recommender system. The major finding of this paper is the CF main problems: Data sparsity, Cold-star, and Scalability. By presenting of these challenges the quality of recommendations can be improved by proposing new methods. The paper ends with conclusion summarizes the limitations of the existing methods and recommendations.
引用
收藏
页码:9045 / 9049
页数:5
相关论文
共 50 条
  • [21] A tourist route recommender system based on collaborative filtering
    Santos, Suzanne Loures
    Durao, Frederico Araujo
    TEXTO LIVRE-LINGUAGEM E TECNOLOGIA, 2023, 16
  • [22] Recommender system based on semantic similarity and collaborative filtering
    Liu Pingfeng
    Nie Guihua
    Chen Donglin
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INNOVATION & MANAGEMENT, VOLS 1 AND 2, 2006, : 1112 - 1117
  • [23] NCGAN:A neural adversarial collaborative filtering for recommender system
    Sun, Jinyang
    Liu, Baisong
    Ren, Hao
    Huang, Weiming
    Journal of Intelligent and Fuzzy Systems, 2022, 42 (04): : 2915 - 2923
  • [24] Recommender Systems and Collaborative Filtering
    Ortega, Fernando
    Gonzalez-Prieto, Angel
    APPLIED SCIENCES-BASEL, 2020, 10 (20):
  • [25] Collaborative filtering recommender systems
    Ekstrand M.D.
    Riedl J.T.
    Konstan J.A.
    Foundations and Trends in Human-Computer Interaction, 2010, 4 (02): : 81 - 173
  • [26] Collaborative Filtering and Data Privacy Protection: Overview and Challenges
    Wang, Xiaodong
    Li, Yunpeng
    Li, Yi
    Zhang, Haibo
    Li, Bo
    2018 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), 2018, : 218 - 223
  • [27] Hybrid collaborative filtering and content-based filtering for improved recommender system
    Jung, KY
    Park, DH
    Lee, JH
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS, 2004, 3036 : 295 - 302
  • [28] A Hybrid Approach using Collaborative filtering and Content based Filtering for Recommender System
    Geetha, G.
    Safa, M.
    Fancy, C.
    Saranya, D.
    PROCEEDINGS OF THE 10TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND ITS APPLICATIONS (NCMTA 18), 2018, 1000
  • [29] Gene-based Collaborative Filtering using recommender system
    Hu, Jinyu
    Sharma, Sugam
    Gao, Zhiwei
    Chang, Victor
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 65 : 332 - 341
  • [30] A hybrid recommender system based on collaborative filtering and cloud model
    Hwang, Chein-Shung
    Fong, Ruei-Siang
    World Academy of Science, Engineering and Technology, 2011, 75 : 500 - 505