On pseudo-stochastic matrices and pseudo-positive maps

被引:9
|
作者
Chruscinski, D. [1 ]
Man'ko, V. I. [2 ,3 ]
Marmo, G. [4 ,5 ,6 ]
Ventriglia, F. [4 ,5 ,6 ]
机构
[1] Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Inst Phys, PL-87100 Torun, Poland
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudni, Moscow Region, Russia
[4] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy
[5] Univ Naples Federico II, MECENAS, I-80126 Naples, Italy
[6] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
positive maps; stochastic matrices; quantum dynamics; DYNAMICAL SEMIGROUPS; QUDIT STATES; SYSTEMS; REPRESENTATION; ENTANGLEMENT;
D O I
10.1088/0031-8949/90/11/115202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stochastic matrices and positive maps in matrix algebras have proved to be very important tools for analysing classical and quantum systems. In particular they represent a natural set of transformations for classical and quantum states, respectively. Here we introduce the notion of pseudo-stochastic matrices and consider their semigroup property. Unlike stochastic matrices, pseudo-stochastic matrices are permitted to have matrix elements which are negative while respecting the requirement that the sum of the elements of each column is one. They also allow for convex combinations, and carry a Lie group structure which permits the introduction of Lie algebra generators. The quantum analog of a pseudo-stochastic matrix exists and is called a pseudo-positive map. They have the property of transforming a subset of quantum states (characterized by maximal purity or minimal von Neumann entropy requirements) into quantum states. Examples of qubit dynamics connected with 'diamond' sets of stochastic matrices and pseudo-positive maps are dealt with.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Pseudo-periodic Maps
    Matsumoto, Yukio
    Maria Montesinos-Amilibia, Jose
    PSEUDO-PERIODIC MAPS AND DEGENERATION OF RIEMANN SURFACES, 2011, 2030 : 3 - 15
  • [42] ENCIPHERING-MAPS WITH PSEUDO-INVERSES AND PSEUDO-TABULATIONS
    Gabriel, Richard
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 61 (01): : 13 - 18
  • [43] Positive maps, doubly stochastic matrices and new family of spectral conditions
    Chruscinski, Dariusz
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [44] PSEUDO-INVERSES OF TRIANGULAR MATRICES
    MEYER, CD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (02): : 405 - &
  • [45] PSEUDO-RINGS OF INFINITE MATRICES
    JUMP, K
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1971, 17 (DEC) : 325 - &
  • [46] Pseudo-inverses Without Matrices
    Helmstetter, Jacques
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (01)
  • [47] Pseudo-Tournament Matrices and Their Eigenvalues
    Wang, Chuanlong
    Yong, Xuerong
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (03) : 205 - 221
  • [48] Symmetric Pseudo-Random Matrices
    Soloveychik, Ilya
    Xiang, Yu
    Tarokh, Vahid
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 3179 - 3196
  • [49] Pseudo-inverses Without Matrices
    Jacques Helmstetter
    Advances in Applied Clifford Algebras, 2021, 31
  • [50] A family of pseudo-Anosov maps
    Demers, Mark F.
    Wojtkowski, Maciej P.
    NONLINEARITY, 2009, 22 (07) : 1743 - 1760