On pseudo-stochastic matrices and pseudo-positive maps

被引:9
|
作者
Chruscinski, D. [1 ]
Man'ko, V. I. [2 ,3 ]
Marmo, G. [4 ,5 ,6 ]
Ventriglia, F. [4 ,5 ,6 ]
机构
[1] Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Inst Phys, PL-87100 Torun, Poland
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudni, Moscow Region, Russia
[4] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy
[5] Univ Naples Federico II, MECENAS, I-80126 Naples, Italy
[6] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
positive maps; stochastic matrices; quantum dynamics; DYNAMICAL SEMIGROUPS; QUDIT STATES; SYSTEMS; REPRESENTATION; ENTANGLEMENT;
D O I
10.1088/0031-8949/90/11/115202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stochastic matrices and positive maps in matrix algebras have proved to be very important tools for analysing classical and quantum systems. In particular they represent a natural set of transformations for classical and quantum states, respectively. Here we introduce the notion of pseudo-stochastic matrices and consider their semigroup property. Unlike stochastic matrices, pseudo-stochastic matrices are permitted to have matrix elements which are negative while respecting the requirement that the sum of the elements of each column is one. They also allow for convex combinations, and carry a Lie group structure which permits the introduction of Lie algebra generators. The quantum analog of a pseudo-stochastic matrix exists and is called a pseudo-positive map. They have the property of transforming a subset of quantum states (characterized by maximal purity or minimal von Neumann entropy requirements) into quantum states. Examples of qubit dynamics connected with 'diamond' sets of stochastic matrices and pseudo-positive maps are dealt with.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] CR rigidity of pseudo harmonic maps and pseudo biharmonic maps
    Urakawa, Hajime
    HOKKAIDO MATHEMATICAL JOURNAL, 2017, 46 (02) : 141 - 187
  • [32] Precise Orbit Determination for BeiDou GEO/IGSO Satellites during Orbit Maneuvering with Pseudo-Stochastic Pulses
    Qin, Zhiwei
    Huang, Guanwen
    Zhang, Qin
    Wang, Le
    Yan, Xingyuan
    Xie, Shichao
    Cao, Yu
    Wang, Xiaolei
    REMOTE SENSING, 2019, 11 (21)
  • [33] A pseudo-stochastic approach for optimal decision making under limited information: a case of an aggregate production system
    Herbon, Avi
    Khmelnitsky, Eugene
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2010, 17 (02) : 197 - 206
  • [34] The Effect of Pseudo-Stochastic Orbit Parameters on GRACE Monthly Gravity Fields: Insights from Lumped Coefficients
    Meyer, U.
    Dahle, C.
    Sneeuw, N.
    Jaggi, A.
    Beutler, G.
    Bock, H.
    VIII HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2016, 142 : 177 - 183
  • [35] THE WEIGHTED PSEUDO-INVERSION OF MATRICES WITH THE POSITIVE DETERMINED WEIGHTS
    MOLCHANOV, IN
    GALBA, EF
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (07): : 14 - 17
  • [36] On pseudo walk matrices
    Farrugia, Alexander
    DISCRETE MATHEMATICS LETTERS, 2019, 1 : 8 - 15
  • [37] Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses
    Zhang, Bingbing
    Wang, Zhengtao
    Zhou, Lv
    Feng, Jiandi
    Qiu, Yaodong
    Li, Fupeng
    SENSORS, 2017, 17 (03)
  • [38] ZUR HISTOCHEMIE DER EPIDERMALEN BARRIERE - EINE PSEUDO-POSITIVE REAKTION AUF MONO-AMINO-OXYDASE (MAO)
    SCHEIDEGGER, JP
    ARCHIV FUR KLINISCHE UND EXPERIMENTELLE DERMATOLOGIE, 1967, 229 (02): : 182 - +
  • [39] On pseudo-stable and pseudo-unstable manifolds for maps
    ElBialy, MS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 232 (02) : 229 - 258
  • [40] Pseudo-Wigner Matrices
    Soloveychik, Ilya
    Xiang, Yu
    Tarokh, Vahid
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 3170 - 3178