On pseudo-stochastic matrices and pseudo-positive maps

被引:9
|
作者
Chruscinski, D. [1 ]
Man'ko, V. I. [2 ,3 ]
Marmo, G. [4 ,5 ,6 ]
Ventriglia, F. [4 ,5 ,6 ]
机构
[1] Nicolaus Copernicus Univ, Fac Phys Astron & Informat, Inst Phys, PL-87100 Torun, Poland
[2] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudni, Moscow Region, Russia
[4] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy
[5] Univ Naples Federico II, MECENAS, I-80126 Naples, Italy
[6] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
positive maps; stochastic matrices; quantum dynamics; DYNAMICAL SEMIGROUPS; QUDIT STATES; SYSTEMS; REPRESENTATION; ENTANGLEMENT;
D O I
10.1088/0031-8949/90/11/115202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Stochastic matrices and positive maps in matrix algebras have proved to be very important tools for analysing classical and quantum systems. In particular they represent a natural set of transformations for classical and quantum states, respectively. Here we introduce the notion of pseudo-stochastic matrices and consider their semigroup property. Unlike stochastic matrices, pseudo-stochastic matrices are permitted to have matrix elements which are negative while respecting the requirement that the sum of the elements of each column is one. They also allow for convex combinations, and carry a Lie group structure which permits the introduction of Lie algebra generators. The quantum analog of a pseudo-stochastic matrix exists and is called a pseudo-positive map. They have the property of transforming a subset of quantum states (characterized by maximal purity or minimal von Neumann entropy requirements) into quantum states. Examples of qubit dynamics connected with 'diamond' sets of stochastic matrices and pseudo-positive maps are dealt with.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] MINIMAL REALIZATIONS OF PSEUDO-POSITIVE AND PSEUDO-BOUNDED RATIONAL MATRICES
    DICKINSON, B
    DELSARTE, P
    GENIN, Y
    KAMP, Y
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (06): : 603 - 605
  • [2] ON PSEUDO-POSITIVE RESULTS OF SEROLOGICAL REACTIONS FOR SYPHILIS
    ARKHANGELSKAYA, EI
    DIYACHENKO, LA
    OLOVYANISHNIKOV, OV
    VESTNIK DERMATOLOGII I VENEROLOGII, 1980, (08) : 22 - 25
  • [3] A moment problem for pseudo-positive definite functionals
    Kounchev, Ognyan
    Render, Hermann
    ARKIV FOR MATEMATIK, 2010, 48 (01): : 97 - 120
  • [4] Pseudo-stochastic signal characterization in wavelet-domain
    Zaytsev, Kirill I.
    Zhirnov, Andrei A.
    Alekhnovich, Valentin I.
    Yurchenko, Stanislav O.
    INTERNATIONAL SCIENTIFIC SEMINARS ON "FUNDAMENTAL AND APPLIED PROBLEMS OF PHOTONICS AND CONDENSED MATTER PHYSICS", 2015, 584
  • [5] Derivation of the continuity equation from a pseudo-Stochastic action
    Kobayashi, Y
    PROGRESS OF THEORETICAL PHYSICS, 2004, 111 (02): : 183 - 197
  • [6] Orbit Combination of BeiDou Satellites with Pseudo-stochastic Pulse
    Liu, Weiping
    Hao, Jinming
    Xie, Jiantao
    Zhang, Kang
    Zhang, Yu
    CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2016 PROCEEDINGS, VOL III, 2016, 390 : 153 - 166
  • [7] Efficient satellite orbit modelling using pseudo-stochastic parameters
    Beutler, G.
    Jaeggi, A.
    Hugentobler, U.
    Mervart, L.
    JOURNAL OF GEODESY, 2006, 80 (07) : 353 - 372
  • [8] A fast pseudo-stochastic sequential cipher generator based on RBMs
    Hu, Fei
    Xu, Xiaofei
    Peng, Tao
    Pu, Changjiu
    Li, Li
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1277 - 1287
  • [9] A fast pseudo-stochastic sequential cipher generator based on RBMs
    Fei Hu
    Xiaofei Xu
    Tao Peng
    Changjiu Pu
    Li Li
    Neural Computing and Applications, 2018, 30 : 1277 - 1287
  • [10] Pseudo-positive regularization for deep person re-identification
    Fuqing Zhu
    Xiangwei Kong
    Haiyan Fu
    Qi Tian
    Multimedia Systems, 2018, 24 : 477 - 489