Functional principal component analysis for longitudinal data with informative dropout

被引:17
|
作者
Shi, Haolun [1 ]
Dong, Jianghu [1 ,2 ,3 ]
Wang, Liangliang [1 ]
Cao, Jiguo [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ Nebraska Med Ctr, Dept Biostat, Omaha, NE USA
[3] Univ Nebraska Med Ctr, Div Nephrol, Omaha, NE USA
基金
加拿大自然科学与工程研究理事会;
关键词
filtration rates; functional data analysis; informative missing; kidney glomerular likelihood; orthonormal empirical basis functions; LINEAR-REGRESSION; CONVERGENCE;
D O I
10.1002/sim.8798
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In longitudinal studies, the values of biomarkers are often informatively missing due to dropout. The conventional functional principal component analysis typically disregards the missing information and simply treats the unobserved data points as missing completely at random. As a result, the estimation of the mean function and the covariance surface might be biased, resulting in a biased estimation of the functional principal components. We propose the informatively missing functional principal component analysis (imFunPCA), which is well suited for cases where the longitudinal trajectories are subject to informative missingness. Computation of the functional principal components in our approach is based on the likelihood of the data, where information of both the observed and missing data points are incorporated. We adopt a regression-based orthogonal approximation method to decompose the latent stochastic process based on a set of orthonormal empirical basis functions. Under the case of informative missingness, we show via simulation studies that the performance of our approach is superior to that of the conventional ones. We apply our method on a longitudinal dataset of kidney glomerular filtration rates for patients post renal transplantation.
引用
收藏
页码:712 / 724
页数:13
相关论文
共 50 条
  • [41] Multilevel Longitudinal Functional Principal Component Model
    Lin, Wenyi
    Zou, Jingjing
    Di, Chongzhi
    Rock, Cheryl L.
    Natarajan, Loki
    STATISTICS IN MEDICINE, 2024, 43 (25) : 4781 - 4795
  • [42] Functional principal component analysis for identifying the child growth pattern using longitudinal birth cohort data
    Karuppusami, Reka
    Antonisamy, Belavendra
    Premkumar, Prasanna S.
    BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
  • [43] Functional principal component analysis for identifying the child growth pattern using longitudinal birth cohort data
    Reka Karuppusami
    Belavendra Antonisamy
    Prasanna S. Premkumar
    BMC Medical Research Methodology, 22
  • [44] Interpretable principal component analysis for multilevel multivariate functional data
    ZHANG, J. U. N.
    SIEGLE, G. R. E. G. J.
    SUN, T. A. O.
    D'ANDREA, W. E. N. D. Y.
    KRAFTY, R. O. B. E. R. T. T.
    BIOSTATISTICS, 2023, 24 (02) : 227 - 243
  • [45] Sparse logistic functional principal component analysis for binary data
    Zhong, Rou
    Liu, Shishi
    Li, Haocheng
    Zhang, Jingxiao
    STATISTICS AND COMPUTING, 2023, 33 (01)
  • [46] Sparse logistic functional principal component analysis for binary data
    Rou Zhong
    Shishi Liu
    Haocheng Li
    Jingxiao Zhang
    Statistics and Computing, 2023, 33
  • [47] Functional principal component analysis for multivariate multidimensional environmental data
    Di Salvo, Francesca
    Ruggieri, Mariantonietta
    Plaia, Antonella
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (04) : 739 - 757
  • [48] Functional principal component analysis for multivariate multidimensional environmental data
    Francesca Di Salvo
    Mariantonietta Ruggieri
    Antonella Plaia
    Environmental and Ecological Statistics, 2015, 22 : 739 - 757
  • [49] Principal Component Analysis of Two-Dimensional Functional Data
    Zhou, Lan
    Pan, Huijun
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (03) : 779 - 801
  • [50] PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL DATA ON RIEMANNIAN MANIFOLDS AND SPHERES
    Dai, Xiongtao
    Mueller, Hans-Georg
    ANNALS OF STATISTICS, 2018, 46 (6B): : 3334 - 3361