Multilevel Longitudinal Functional Principal Component Model

被引:0
|
作者
Lin, Wenyi [1 ]
Zou, Jingjing [1 ]
Di, Chongzhi [2 ]
Rock, Cheryl L. [3 ]
Natarajan, Loki [1 ]
机构
[1] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth & Human Longev Sci, Div Biostat & Bioinformat, La Jolla, CA 92093 USA
[2] Fred Hutchinson Canc Ctr, Publ Hlth Sci Div, Seattle, WA USA
[3] Univ Calif San Diego, Sch Med, Dept Family Med & Publ Hlth, Div Prevent Med, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
functional principal component analysis; functional regression; unbalanced study design; PHYSICAL-ACTIVITY; UNITED-STATES; PUBLIC-HEALTH; ADULTS; ASSOCIATION; PREVENTION; REGRESSION; NUTRITION; RISK;
D O I
10.1002/sim.10207
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sensor devices, such as accelerometers, are widely used for measuring physical activity (PA). These devices provide outputs at fine granularity (e.g., 10-100 Hz or minute-level), which while providing rich data on activity patterns, also pose computational challenges with multilevel densely sampled data, resulting in PA records that are measured continuously across multiple days and visits. On the other hand, a scalar health outcome (e.g., BMI) is usually observed only at the individual or visit level. This leads to a discrepancy in numbers of nested levels between the predictors (PA) and outcomes, raising analytic challenges. To address this issue, we proposed a multilevel longitudinal functional principal component analysis (mLFPCA) model to directly model multilevel functional PA inputs in a longitudinal study, and then implemented a longitudinal functional principal component regression (FPCR) to explore the association between PA and obesity-related health outcomes. Additionally, we conducted a comprehensive simulation study to examine the impact of imbalanced multilevel data on both mLFPCA and FPCR performance and offer guidelines for selecting optimal methods.
引用
收藏
页码:4781 / 4795
页数:15
相关论文
共 50 条
  • [1] MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS
    Di, Chong-Zhi
    Crainiceanu, Ciprian M.
    Caffo, Brian S.
    Punjabi, Naresh M.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (01): : 458 - 488
  • [2] Multilevel sparse functional principal component analysis
    Di, Chongzhi
    Crainiceanu, Ciprian M.
    Jank, Wolfgang S.
    STAT, 2014, 3 (01): : 126 - 143
  • [3] Fast Multilevel Functional Principal Component Analysis
    Cui, Erjia
    Li, Ruonan
    Crainiceanu, Ciprian M.
    Xiao, Luo
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (02) : 366 - 377
  • [4] Longitudinal Functional Principal Component Analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 149 - 154
  • [5] Longitudinal functional principal component analysis
    Greven, Sonja
    Crainiceanu, Ciprian
    Caffo, Brian
    Reich, Daniel
    ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1022 - 1054
  • [6] Interpretable principal component analysis for multilevel multivariate functional data
    ZHANG, J. U. N.
    SIEGLE, G. R. E. G. J.
    SUN, T. A. O.
    D'ANDREA, W. E. N. D. Y.
    KRAFTY, R. O. B. E. R. T. T.
    BIOSTATISTICS, 2023, 24 (02) : 227 - 243
  • [7] Functional principal component analysis for longitudinal and survival data
    Yao, Fang
    STATISTICA SINICA, 2007, 17 (03) : 965 - 983
  • [8] Multilevel Functional Principal Component Analysis for High-Dimensional Data
    Zipunnikov, Vadim
    Caffo, Brian
    Yousem, David M.
    Davatzikos, Christos
    Schwartz, Brian S.
    Crainiceanu, Ciprian
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (04) : 852 - 873
  • [9] Coherent mortality forecasting by the weighted multilevel functional principal component approach
    Wu, Ruhao
    Wang, Bo
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (10) : 1774 - 1791
  • [10] Multilevel Functional Principal Component Analysis of Facade Sound Insulation Data
    Argiento, Raffaele
    Bissiri, Pier Giovanni
    Pievatolo, Antonio
    Scrosati, Chiara
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2015, 31 (07) : 1239 - 1253