Multilevel Longitudinal Functional Principal Component Model

被引:0
|
作者
Lin, Wenyi [1 ]
Zou, Jingjing [1 ]
Di, Chongzhi [2 ]
Rock, Cheryl L. [3 ]
Natarajan, Loki [1 ]
机构
[1] Univ Calif San Diego, Herbert Wertheim Sch Publ Hlth & Human Longev Sci, Div Biostat & Bioinformat, La Jolla, CA 92093 USA
[2] Fred Hutchinson Canc Ctr, Publ Hlth Sci Div, Seattle, WA USA
[3] Univ Calif San Diego, Sch Med, Dept Family Med & Publ Hlth, Div Prevent Med, La Jolla, CA USA
基金
美国国家科学基金会;
关键词
functional principal component analysis; functional regression; unbalanced study design; PHYSICAL-ACTIVITY; UNITED-STATES; PUBLIC-HEALTH; ADULTS; ASSOCIATION; PREVENTION; REGRESSION; NUTRITION; RISK;
D O I
10.1002/sim.10207
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sensor devices, such as accelerometers, are widely used for measuring physical activity (PA). These devices provide outputs at fine granularity (e.g., 10-100 Hz or minute-level), which while providing rich data on activity patterns, also pose computational challenges with multilevel densely sampled data, resulting in PA records that are measured continuously across multiple days and visits. On the other hand, a scalar health outcome (e.g., BMI) is usually observed only at the individual or visit level. This leads to a discrepancy in numbers of nested levels between the predictors (PA) and outcomes, raising analytic challenges. To address this issue, we proposed a multilevel longitudinal functional principal component analysis (mLFPCA) model to directly model multilevel functional PA inputs in a longitudinal study, and then implemented a longitudinal functional principal component regression (FPCR) to explore the association between PA and obesity-related health outcomes. Additionally, we conducted a comprehensive simulation study to examine the impact of imbalanced multilevel data on both mLFPCA and FPCR performance and offer guidelines for selecting optimal methods.
引用
收藏
页码:4781 / 4795
页数:15
相关论文
共 50 条
  • [31] Interpretable Functional Principal Component Analysis
    Lin, Zhenhua
    Wang, Liangliang
    Cao, Jiguo
    BIOMETRICS, 2016, 72 (03) : 846 - 854
  • [32] A survey of functional principal component analysis
    Han Lin Shang
    AStA Advances in Statistical Analysis, 2014, 98 : 121 - 142
  • [33] Functional quantile principal component analysis
    Mendez-Civieta, Alvaro
    Wei, Ying
    Diaz, Keith M.
    Goldsmith, Jeff
    BIOSTATISTICS, 2024,
  • [34] Supervised functional principal component analysis
    Yunlong Nie
    Liangliang Wang
    Baisen Liu
    Jiguo Cao
    Statistics and Computing, 2018, 28 : 713 - 723
  • [35] Functional principal component analysis in ERP
    Zhang, Min-Qiang
    Xiong, Min-Ping
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2012, 47 : 670 - 670
  • [36] Parametric Functional Principal Component Analysis
    Sang, Peijun
    Wang, Liangliang
    Cao, Jiguo
    BIOMETRICS, 2017, 73 (03) : 802 - 810
  • [37] Elastic functional principal component regression
    Tucker, J. Derek
    Lewis, John R.
    Srivastava, Anuj
    STATISTICAL ANALYSIS AND DATA MINING, 2019, 12 (02) : 101 - 115
  • [38] A Bayesian functional principal component analysis framework for genome-wide association with longitudinal outcomes
    Temko, Daniel
    Nolan, Tui H.
    Richardson, Sylvia
    Ruffieux, Helene
    HUMAN HEREDITY, 2023, 88 (SUPPL 1) : 12 - 12
  • [39] Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction
    Lin, Xiao
    Lu, Tao
    Yan, Fangrong
    Li, Ruosha
    Huang, Xuelin
    BIOMETRICS, 2018, 74 (04) : 1482 - 1491
  • [40] Semiparametric mixture regression for asynchronous longitudinal data using multivariate functional principal component analysis
    Lu, Ruihan
    Li, Yehua
    Yao, Weixin
    BIOSTATISTICS, 2025, 26 (01)