THE CONSTANT INAPPROXIMABILITY OF THE PARAMETERIZED DOMINATING SET PROBLEM

被引:14
|
作者
Chen, Yijia [1 ]
Lin, Bingkai [2 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
[2] JST, NII, ERATO, Kawarabayashi Large Graph Project,Chiyoda Ku, 2-1-2 Hitotsubashi, Tokyo 1018430, Japan
基金
中国国家自然科学基金;
关键词
dominating set; superpolynomial time inapproximability; lower bound; exponential time hypothesis; APPROXIMATION; HARDNESS;
D O I
10.1137/17M1127211
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A set D of vertices of a graph G is a dominating set if every vertex of G is contained in D or adjacent to some vertex of D. The number of vertices in a smallest dominating set of G is denoted by gamma(G). We prove that, under the assumption FPT not equal W[1] from parameterized complexity, for any constant c is an element of N+ and computable function f : N -> N there is no algorithm which on every input graph G finds a dominating set of size at most c . gamma(G) in f(gamma(G)) . vertical bar G vertical bar(O(1) )time. In other words, any constant approximation of the parameterized dominating set problem is W[1]-hard. Furthermore, assuming the exponential time hypothesis (ETH) [R. Impagliazzo and R. Paturi, T. Comput. System Sci., 62 (2001), pp. 367-375], we can even rule out the existence of a f (gamma(G)). vertical bar G vertical bar((log gamma(G))epsilon/12) -time algorithm which on every input graph G outputs a dominating set of size at most (3+epsilon)root log (gamma(G)).gamma(G) for every 0 <epsilon < 1. Our hardness reduction is built on the second author's recent W[1]-hardness proof of the biclique problem [B. Lin, The parameterized complexity of k-BICLIQUE, in Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015 (San Diego, CA), ACM, New York, SIAM, Philadelphia, 2015, pp. 605-615]. This yields, among other things, a proof without the probabilistically checkable proof (PCP) machinery that the classic dominating set problem has no polynomial time constant approximation under ETH.
引用
收藏
页码:513 / 533
页数:21
相关论文
共 50 条
  • [31] Complexity and inapproximability results for the Power Edge Set problem
    Toubaline, Sonia
    D'Ambrosio, Claudia
    Liberti, Leo
    Poirion, Pierre-Louis
    Schieber, Baruch
    Shachnai, Hadas
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (03) : 895 - 905
  • [32] Complexity and inapproximability results for the Power Edge Set problem
    Sonia Toubaline
    Claudia D’Ambrosio
    Leo Liberti
    Pierre-Louis Poirion
    Baruch Schieber
    Hadas Shachnai
    Journal of Combinatorial Optimization, 2018, 35 : 895 - 905
  • [33] From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More
    Chalermsook, Parinya
    Cygan, Marek
    Kortsarz, Guy
    Laekhanukit, Bundit
    Manurangsi, Pasin
    Nanongkai, Danupon
    Trevisan, Luca
    2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, : 743 - 754
  • [34] The probabilistic minimum dominating set problem
    Boria, Nicolas
    Murat, Cecile
    Paschos, Vangelis Th.
    DISCRETE APPLIED MATHEMATICS, 2018, 234 : 93 - 113
  • [35] A note on the eternal dominating set problem
    Stephen Finbow
    Serge Gaspers
    Margaret-Ellen Messinger
    Paul Ottaway
    International Journal of Game Theory, 2018, 47 : 543 - 555
  • [36] The wake up dominating set problem
    Bannoura, Amir
    Ortolf, Christian
    Reindl, Leonhard
    Schindelhauer, Christian
    THEORETICAL COMPUTER SCIENCE, 2015, 608 : 120 - 134
  • [37] Independent dominating set problem revisited
    Liu, Ching-Hao
    Poon, Sheung-Hung
    Lin, Jin-Yong
    THEORETICAL COMPUTER SCIENCE, 2015, 562 : 1 - 22
  • [38] A decidability result for the dominating set problem
    Lozin, Vadim V.
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (44-46) : 4023 - 4027
  • [39] A note on the eternal dominating set problem
    Finbow, Stephen
    Gaspers, Serge
    Messinger, Margaret-Ellen
    Ottaway, Paul
    INTERNATIONAL JOURNAL OF GAME THEORY, 2018, 47 (02) : 543 - 555
  • [40] Parameterized algorithms for Steiner tree and (connected) dominating set on path graphs
    de Figueiredo, Celina M. H.
    Lopes, Raul
    de Melo, Alexsander A.
    Silva, Ana
    NETWORKS, 2024, 84 (02) : 132 - 147