Attention based spatiotemporal graph attention networks for traffic flow forecasting

被引:73
|
作者
Wang, Yi [1 ]
Jing, Changfeng [1 ]
Xu, Shishuo [1 ]
Guo, Tao [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomatics & Urban Spatial Informat, Beijing, Peoples R China
[2] Sichuan Acad Agr Sci, Inst Remote Sensing Applicat, Chengdu 610066, Peoples R China
基金
北京市自然科学基金;
关键词
Traffic flow forecasting; Spatiotemporal graph neural network; Network deepening; Network degradation; Dynamic spatiotemporal correlation; Intelligent transportation systems; CONVOLUTIONAL NETWORK; PREDICTION; SYSTEM;
D O I
10.1016/j.ins.2022.05.127
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow forecasting is a crucial task in transportation and necessary for congestion mitigation, traffic control, and intelligent traffic management. Deep learning models can aid in high-accuracy traffic flow forecasting; however, the current research focuses only the ability of the model to capture dynamic spatiotemporal features, and studies on the effect of deeper network layers on spatiotemporal features-a critical factor affecting traffic flow forecasting accuracy-are limited. In this paper, we propose an attention-based spatiotemporal graph attention network (ASTGAT) model designed for network degradation and over-smoothing problems to investigate in-depth spatiotemporal information. Compared to other networks, ASTGAT can capture dynamic spatiotemporal correlations in data and deepen the network to improve prediction accuracy through multiple residual convolution and high-low feature concat. ASTGAT comprises three components that separately model the temporal relationships of the recent, daily, and weekly periods. Each component stacks multiple spatiotemporal blocks constructed using the attention mechanism, dilated gated convolution, and graph attention network. The graph and temporal attention layers capture spatiotemporal information dynamically, and the graph attention layer alleviates the over-smoothing phenomenon to deepen the network. The combined utilization of the attention mechanism and dilated gated convolution layer improves the medium and long temporal span prediction ability. We validated ASTGAT using two open highway data sets, and the results demonstrated that our ASTGAT model effectively extracts in-depth spatiotemporal information and the prediction results outperform those predicted by the current eight baselines. Our research is dedicated to establishing a better scientific basis for intelligent traffic management that can assist in decision making.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 883
页数:15
相关论文
共 50 条
  • [31] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Qingyong Zhang
    Wanfeng Chang
    Changwu Li
    Conghui Yin
    Yixin Su
    Peng Xiao
    Neural Computing and Applications, 2023, 35 : 21827 - 21839
  • [32] A combined traffic flow forecasting model based on graph convolutional network and attention mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (12):
  • [33] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839
  • [34] A Spatiotemporal Graph Neural Network with Graph Adaptive and Attention Mechanisms for Traffic Flow Prediction
    Huo, Yanqiang
    Zhang, Han
    Tian, Yuan
    Wang, Zijian
    Wu, Jianqing
    Yao, Xinpeng
    ELECTRONICS, 2024, 13 (01)
  • [35] DGTNet:dynamic graph attention transformer network for traffic flow forecasting
    Chen, Jing
    Li, Wuzhi
    Chen, Shuixuan
    Zhang, Guowei
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [37] Graph Attention LSTM Network: A New Model for Traffic Flow Forecasting
    Wu Tianlong
    Chen Feng
    Wan Yun
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 241 - 245
  • [38] Road Network Traffic Flow Prediction Method Based on Graph Attention Networks
    Wang, Junqiang
    Yang, Shuqiang
    Gao, Ya
    Wang, Jun
    Alfarraj, Osama
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (15)
  • [39] Dynamic graph convolutional networks based on spatiotemporal data embedding for traffic flow forecasting
    Zhang, Wenyu
    Zhu, Kun
    Zhang, Shuai
    Chen, Qian
    Xu, Jiyuan
    Knowledge-Based Systems, 2022, 250
  • [40] MSASGCN : Multi-Head Self-Attention Spatiotemporal Graph Convolutional Network for Traffic Flow Forecasting
    Cao, Yang
    Liu, Detian
    Yin, Qizheng
    Xue, Fei
    Tang, Hengliang
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022