DGTNet:dynamic graph attention transformer network for traffic flow forecasting

被引:0
|
作者
Chen, Jing [1 ]
Li, Wuzhi [1 ]
Chen, Shuixuan [1 ]
Zhang, Guowei [1 ]
机构
[1] Xiamen Univ Technol, Sch Mech & Automot Engn, 600 Ligong Rd, Xiamen 361024, Fujian, Peoples R China
来源
ENGINEERING RESEARCH EXPRESS | 2024年 / 6卷 / 04期
关键词
traffic flow prediction; dynamic graph; adaptive signal decomposition; transformer;
D O I
10.1088/2631-8695/ad9238
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graph-based traffic flow prediction plays a crucial role in urban traffic management and planning. In this paper, we propose a novel Dynamic Graph Attention Transformer Network (DGTNet), which is designed to address the issue of inadequate integration of temporal and spatial dimensions in traditional models. DGTNet maintains temporal continuity while revealing the complex dynamic relationships between key nodes in the urban traffic system, capturing the periodic changes in the rhythm of city life. Specifically, this study adopts adaptive signal decomposition technology to decompose traffic data into multiple Intrinsic Mode Functions (IMFs), effectively capturing the dynamic changes in traffic flow. This decomposition method is key to the implementation of DGTNet's dynamic graph construction, enabling the analysis of traffic flow at different time scales, thereby providing a new perspective for traffic flow prediction research. In the traffic prediction module, we comprehensively consider node, edge, and graph structural information, adopting a multi-head self-attention mechanism to achieve direct cross-modeling in both temporal and spatial dimensions. Finally, we introduce a position-wise feedforward network layer to integrate different types of data and capture nonlinear relationships. The experimental results, based on public transportation network datasets METR_LA, PEMS_BAY, PEMS03, and PEMS07, demonstrate that DGTNet exhibits notable enhancements in three evaluation indicators, namely the Mean Absolute Percentage Error (MAPE), the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE). The pertinent code has been made available for public access at https://github.com/chenjing0616/DGTNet.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network
    Hong Zhang
    Hongyan Wang
    Linlong Chen
    Tianxin Zhao
    Sunan Kan
    International Journal of Automotive Technology, 2024, 25 : 455 - 468
  • [2] Traffic Flow Forecasting Based on Transformer with Diffusion Graph Attention Network
    Zhang, Hong
    Wang, Hongyan
    Chen, Linlong
    Zhao, Tianxin
    Kan, Sunan
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2024, 25 (03) : 455 - 468
  • [3] Spatiotemporal synchronous dynamic graph attention network for traffic flow forecasting
    Xia D.
    Lin Z.
    Chen Y.
    Hu Y.
    Li Y.
    Li H.
    Neural Computing and Applications, 2024, 36 (22) : 13745 - 13759
  • [4] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [5] Graph convolutional dynamic recurrent network with attention for traffic forecasting
    Jiagao Wu
    Junxia Fu
    Hongyan Ji
    Linfeng Liu
    Applied Intelligence, 2023, 53 : 22002 - 22016
  • [6] Graph convolutional dynamic recurrent network with attention for traffic forecasting
    Wu, Jiagao
    Fu, Junxia
    Ji, Hongyan
    Liu, Linfeng
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22002 - 22016
  • [7] Spatiotemporal Residual Graph Attention Network for Traffic Flow Forecasting
    Zhang, Qingyong
    Li, Changwu
    Su, Fuwen
    Li, Yuanzheng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (13) : 11518 - 11532
  • [8] Dynamic spatial aware graph transformer for spatiotemporal traffic flow forecasting
    Li, Zequan
    Zhou, Jinglin
    Lin, Zhizhe
    Zhou, Teng
    KNOWLEDGE-BASED SYSTEMS, 2024, 297
  • [9] Dynamic Jacobi graph and trend-aware flow attention convolutional network for traffic forecasting
    Yang, Yongpeng
    Yang, Zhenzhen
    Yang, Zhen
    DIGITAL SIGNAL PROCESSING, 2023, 141
  • [10] Graph transformer based dynamic multiple graph convolution networks for traffic flow forecasting
    Hu, Yongli
    Peng, Ting
    Guo, Kan
    Sun, Yanfeng
    Gao, Junbin
    Yin, Baocai
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (09) : 1835 - 1845