T-FLATNESS AND BOCHNER FLATNESS OF THE TANGENT BUNDLES OF LIE GROUPS

被引:0
|
作者
Altunbas, Murat [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, TR-24100 Erzincan, Turkey
关键词
  tangent Lie group; T-tensor; Bochner tensor;
D O I
10.9741/proc.5487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (G, g) be a bi-invariant Lie group and (TG, g & SIM;) be its tangent bundle. In this paper, we compute the T & SIM;-curvature tensor and a Bochner tensor B & SIM; on (TG, g & SIM;) and show that their flatnesses are related with flatness of the base manifold (G, g).
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [31] Geometry of Tangent Poisson-Lie Groups
    Al-Dayel, Ibrahim
    Aloui, Foued
    Deshmukh, Sharief
    MATHEMATICS, 2023, 11 (01)
  • [32] Kähler-Einstein metrics and obstruction flatness II: Unit Sphere bundles
    Ebenfelt, Peter
    Xiao, Ming
    Xu, Hang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (09)
  • [34] SPHERICAL BOCHNER THEOREM ON SEMI-SIMPLE LIE GROUPS
    BARKER, WH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A170 - A170
  • [35] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Ilka Agricola
    Ana Cristina Ferreira
    Advances in Applied Clifford Algebras, 2017, 27 : 895 - 911
  • [36] Actions of Semisimple Lie Groups on Circle Bundles
    Dave Witte
    Robert J. Zimmer
    Geometriae Dedicata, 2001, 87 : 91 - 121
  • [37] Tangent Lie Groups are Riemannian Naturally Reductive Spaces
    Agricola, Ilka
    Ferreira, Ana Cristina
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 895 - 911
  • [38] Riemannian Geometry of Two Families of Tangent Lie Groups
    F. Asgari
    H. R. Salimi Moghaddam
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 193 - 203
  • [39] Riemannian Geometry of Two Families of Tangent Lie Groups
    Asgari, F.
    Moghaddam, H. R. Salimi
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 193 - 203
  • [40] Actions of semisimple Lie groups on circle bundles
    Witte, D
    Zimmer, RJ
    GEOMETRIAE DEDICATA, 2001, 87 (1-3) : 91 - 121