T-FLATNESS AND BOCHNER FLATNESS OF THE TANGENT BUNDLES OF LIE GROUPS

被引:0
|
作者
Altunbas, Murat [1 ]
机构
[1] Erzincan Binali Yildirim Univ, Fac Arts & Sci, TR-24100 Erzincan, Turkey
关键词
  tangent Lie group; T-tensor; Bochner tensor;
D O I
10.9741/proc.5487
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (G, g) be a bi-invariant Lie group and (TG, g & SIM;) be its tangent bundle. In this paper, we compute the T & SIM;-curvature tensor and a Bochner tensor B & SIM; on (TG, g & SIM;) and show that their flatnesses are related with flatness of the base manifold (G, g).
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [1] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    Blair, David E.
    Yildirim, Handan
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (03) : 259 - 269
  • [2] Bochner flatness of tangent bundles with g-natural almost Hermitian metrics
    David E. Blair
    Handan Yıldırım
    Annals of Global Analysis and Geometry, 2016, 49 : 259 - 269
  • [3] Flatness, tangent systems and flat outputs
    Fossas, E
    Franch, J
    Palau, A
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 313 - 317
  • [4] Graph bundles and Ricci-flatness
    Li, Wenbo
    Liu, Shiping
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (02) : 523 - 535
  • [5] FLATNESS OF TANGENT-CONES OF A FAMILY OF HYPERSURFACES
    KENNEDY, G
    JOURNAL OF ALGEBRA, 1990, 128 (01) : 240 - 256
  • [6] Bochner and conformal flatness of normal metric contact pairs
    Gianluca Bande
    David E. Blair
    Amine Hadjar
    Annals of Global Analysis and Geometry, 2015, 48 : 47 - 56
  • [7] Bochner and conformal flatness of normal metric contact pairs
    Bande, Gianluca
    Blair, David E.
    Hadjar, Amine
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (01) : 47 - 56
  • [8] FLATNESS OF THE ADJOINT STRUCTURE OF A LIE GROUP
    GIRAUD, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (07): : 459 - 461
  • [9] Numerical flatness and principal bundles on Fujiki manifolds
    Biswas, Indranil
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 80
  • [10] Bochner and conformal flatness on normal complex contact metric manifolds
    Blair, David E.
    Martin-Molina, Veronica
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) : 249 - 258