Constraint propagation using dominance in interval Branch & Bound for nonlinear biobjective optimization

被引:8
|
作者
Martin, Benjamin [1 ,2 ]
Goldsztejn, Alexandre [3 ]
Granvilliers, Laurent [4 ]
Jermann, Christophe [4 ]
机构
[1] Univ Nova Lisboa, NOVA LINCS, Lisbon, Portugal
[2] Ecole Polytech, LIX, Palaiseau, France
[3] Ecole Cent Nantes, CNRS, IRCCyN, Nantes, France
[4] Univ Nantes, LINA, Nantes, France
关键词
Nonlinear optimization; Biobjective optimization; Constraint propagation; Interval Branch & Bound; BI-OBJECTIVE OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; EFFICIENT SET; ALGORITHM; SATISFACTION; DISJUNCTION; SEARCH;
D O I
10.1016/j.ejor.2016.05.045
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Constraint propagation has been widely used in nonlinear single-objective optimization inside interval Branch & Bound algorithms as an efficient way to discard infeasible and non-optimal regions of the search space. On the other hand, when considering two objective functions, constraint propagation is uncommon. It has mostly been applied in combinatorial problems inside particular methods, The difficulty is in the exploitation of dominance relations in order to discard the so-called non-Pareto optimal solutions inside a decision domain, which complicates the design of complete and efficient constraint propagation methods exploiting dominance relations, In this paper, we present an interval Branch & Bound algorithm which integrates dominance contractors, constraint propagation mechanisms that exploit an upper bound set using dominance relations. This method discards from the decision space values yielding solutions dominated by some solutions from the upper bound set. The effectiveness of the approach is shown on a sample of benchmark problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:934 / 948
页数:15
相关论文
共 50 条
  • [41] Fault Detection using Interval Kalman Filtering enhanced by Constraint Propagation
    Xiong, Jun
    Jauberthie, Carine
    Trave-Massuyes, Louise
    Le Gall, Francoise
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 490 - 495
  • [42] Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework
    Cooper, Kyle
    Hunter, Susan R.
    Nagaraj, Kalyani
    INFORMS JOURNAL ON COMPUTING, 2020, 32 (04) : 1080 - 1100
  • [43] Using an interval branch-and-bound algorithm in the Hartree-Fock method
    Lavor, CC
    Cardozo, TM
    Nascimento, MAC
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 103 (05) : 500 - 504
  • [44] Multisection in interval branch-and-bound methods for global optimization -: I.: Theoretical results
    Csallner, AE
    Csendes, T
    Markót, MC
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (04) : 371 - 392
  • [45] Multisection in Interval Branch-and-Bound Methods for Global Optimization II. Numerical Tests
    Mihály Csaba Markót
    Tibor Csendes
    András Erik Csallner
    Journal of Global Optimization, 2000, 16 (3) : 219 - 228
  • [46] Multisection in Interval Branch-and-Bound Methods for Global Optimization – I. Theoretical Results
    András Erik Csallner
    Tibor Csendes
    Mihály Csaba markót
    Journal of Global Optimization, 2000, 16 : 371 - 392
  • [47] Multisection in interval branch-and-bound methods for global optimization II.: Numerical tests
    Markót, MC
    Csendes, T
    Csallner, AE
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (03) : 219 - 228
  • [48] Scheduling of continuous processes using constraint-based search: An application to Branch and Bound
    Rodrigues, LCA
    Carnieri, R
    Neves, F
    EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING - 12, 2002, 10 : 751 - 756
  • [49] Strategy of constraint, dominance and screening solutions with same sequence in decision space for interval multi-objective optimization
    Chen, Zhi-Wang
    Bai, Xin
    Yang, Qi
    Huang, Xing-Wang
    Li, Guo-Qiang
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (12): : 2115 - 2124
  • [50] Optimization of nonlinear systems using the interval linearization method
    Shashikhin, V.N.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 1999, 38 (03):