Constraint propagation using dominance in interval Branch & Bound for nonlinear biobjective optimization

被引:8
|
作者
Martin, Benjamin [1 ,2 ]
Goldsztejn, Alexandre [3 ]
Granvilliers, Laurent [4 ]
Jermann, Christophe [4 ]
机构
[1] Univ Nova Lisboa, NOVA LINCS, Lisbon, Portugal
[2] Ecole Polytech, LIX, Palaiseau, France
[3] Ecole Cent Nantes, CNRS, IRCCyN, Nantes, France
[4] Univ Nantes, LINA, Nantes, France
关键词
Nonlinear optimization; Biobjective optimization; Constraint propagation; Interval Branch & Bound; BI-OBJECTIVE OPTIMIZATION; MULTIOBJECTIVE OPTIMIZATION; EFFICIENT SET; ALGORITHM; SATISFACTION; DISJUNCTION; SEARCH;
D O I
10.1016/j.ejor.2016.05.045
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Constraint propagation has been widely used in nonlinear single-objective optimization inside interval Branch & Bound algorithms as an efficient way to discard infeasible and non-optimal regions of the search space. On the other hand, when considering two objective functions, constraint propagation is uncommon. It has mostly been applied in combinatorial problems inside particular methods, The difficulty is in the exploitation of dominance relations in order to discard the so-called non-Pareto optimal solutions inside a decision domain, which complicates the design of complete and efficient constraint propagation methods exploiting dominance relations, In this paper, we present an interval Branch & Bound algorithm which integrates dominance contractors, constraint propagation mechanisms that exploit an upper bound set using dominance relations. This method discards from the decision space values yielding solutions dominated by some solutions from the upper bound set. The effectiveness of the approach is shown on a sample of benchmark problems. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:934 / 948
页数:15
相关论文
共 50 条
  • [21] Interval-based global optimization in engineering using model reformulation and constraint propagation
    Mazhoud, Issam
    Hadj-Hamou, Khaled
    Bigeon, Jean
    Remy, Ghislain
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (02) : 404 - 417
  • [22] Using Interval Constraint Propagation for Pseudo-Boolean Constraint Solving
    Scheibler, Karsten
    Becker, Bernd
    2014 FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD), 2014, : 203 - 206
  • [23] Empirical evaluation of innovations in interval branch and bound algorithms for nonlinear systems
    Kearfott, RB
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (02): : 574 - 594
  • [24] Empirical evaluation of innovations in interval branch and bound algorithms for nonlinear systems
    Univ of Southwestern Louisiana, Lafayette, United States
    SIAM J Sci Comput, 2 (574-594):
  • [25] Localization of an underwater robot using interval constraint propagation
    Jaulin, Luc
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING - CP 2006, 2006, 4204 : 244 - 255
  • [26] On estimating workload in interval branch-and-bound global optimization algorithms
    José L. Berenguel
    L. G. Casado
    I. García
    Eligius M. T. Hendrix
    Journal of Global Optimization, 2013, 56 : 821 - 844
  • [27] Optimal Multisections in Interval Branch-and-Bound Methods of Global Optimization
    Jean-Louis Lagouanelle
    Gérard Soubry
    Journal of Global Optimization, 2004, 30 : 23 - 38
  • [28] Branch-and-bound interval global optimization on shared memory multiprocessors
    Casado, L. G.
    Martinez, J. A.
    Garcia, I.
    Hendrix, E. M. T.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05): : 689 - 701
  • [30] On estimating workload in interval branch-and-bound global optimization algorithms
    Berenguel, Jose L.
    Casado, L. G.
    Garcia, I.
    Hendrix, Eligius M. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 821 - 844