Cavity quantum electrodynamics with color centers in diamond

被引:86
|
作者
Janitz, Erika [1 ]
Bhaskar, Mihir K. [2 ]
Childress, Lilian [1 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
来源
OPTICA | 2020年 / 7卷 / 10期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
SOLID-STATE SPIN; NITROGEN-VACANCY CENTERS; HIGH-PRESSURE SYNTHESIS; SINGLE-ATOM; ENTANGLEMENT DISTRIBUTION; DETERMINISTIC GENERATION; NANOPHOTONIC CIRCUITS; HERALDED ENTANGLEMENT; SPONTANEOUS EMISSION; ION-IMPLANTATION;
D O I
10.1364/OPTICA.398628
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherent interfaces between optical photons and long-lived matter qubits form a key resource for a broad range of quantum technologies. Cavity quantum electrodynamics (cQED) offers a route to achieve such an interface by enhancing interactions between cavity-confined photons and individual emitters. Over the last two decades, a promising new class of emitters based on defect centers in diamond has emerged, combining long spin coherence times with atom-like optical transitions. More recently, advances in optical resonator technologies have made it feasible to realize cQED in diamond. This article reviews progress towards coupling color centers in diamond to optical resonators, focusing on approaches compatible with quantum networks. We consider the challenges for cQED with solid-state emitters and introduce the relevant properties of diamond defect centers before examining two qualitatively different resonator designs: micrometer-scale Fabry-Perot cavities and diamond nanophotonic cavities. For each approach, we examine the underlying theory and fabrication, discuss strengths and outstanding challenges, and highlight state-of-the-art experiments. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1232 / 1252
页数:21
相关论文
共 50 条
  • [41] Orientational alignment in cavity quantum electrodynamics
    Keeling, Jonathan
    Kirton, Peter G.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [42] On collective effects in cavity quantum electrodynamics
    Skagerstam, BSK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (02) : 314 - 326
  • [43] Flow electrification by cavity quantum electrodynamics?
    Prevenslik, TV
    2003 ANNUAL REPORT CONFERENCE ON ELECTRICAL INSULATION AND DIELECTRIC PHENOMENA, 2003, : 670 - 673
  • [44] Cooling and trapping in cavity quantum electrodynamics
    Rempe, G
    Hijlkema, M
    Kuhn, A
    Maunz, P
    Murr, K
    Nussmann, S
    Pinkse, PWH
    Puppe, T
    Schuster, I
    Syassen, N
    Weber, B
    Laser Spectroscopy, 2005, : 178 - 188
  • [45] Cavity quantum electrodynamics in the nonperturbative regime
    De Bernardis, Daniele
    Jaako, Tuomas
    Rabl, Peter
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [46] Exciton condensation in cavity quantum electrodynamics
    Jiang, Wei
    Liu, Wu Ming
    Fan, Heng
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (05)
  • [47] Cavity quantum electrodynamics inside a hollow spherical cavity
    Jhe, W
    Jang, K
    PHYSICAL REVIEW A, 1996, 53 (02): : 1126 - 1129
  • [48] Quantum to Classical Cavity Chemistry Electrodynamics
    Calderon, Leonardo F.
    Trivino, Humberto
    Pachon, Leonardo A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (51): : 11725 - 11734
  • [49] Cavity quantum electrodynamics: Coherence in context
    Mabuchi, H
    Doherty, AC
    SCIENCE, 2002, 298 (5597) : 1372 - 1377
  • [50] Atomic fractals in cavity quantum electrodynamics
    Prants, SV
    Uleysky, MY
    PHYSICS LETTERS A, 2003, 309 (5-6) : 357 - 362