Cavity quantum electrodynamics with color centers in diamond

被引:86
|
作者
Janitz, Erika [1 ]
Bhaskar, Mihir K. [2 ]
Childress, Lilian [1 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
来源
OPTICA | 2020年 / 7卷 / 10期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
SOLID-STATE SPIN; NITROGEN-VACANCY CENTERS; HIGH-PRESSURE SYNTHESIS; SINGLE-ATOM; ENTANGLEMENT DISTRIBUTION; DETERMINISTIC GENERATION; NANOPHOTONIC CIRCUITS; HERALDED ENTANGLEMENT; SPONTANEOUS EMISSION; ION-IMPLANTATION;
D O I
10.1364/OPTICA.398628
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherent interfaces between optical photons and long-lived matter qubits form a key resource for a broad range of quantum technologies. Cavity quantum electrodynamics (cQED) offers a route to achieve such an interface by enhancing interactions between cavity-confined photons and individual emitters. Over the last two decades, a promising new class of emitters based on defect centers in diamond has emerged, combining long spin coherence times with atom-like optical transitions. More recently, advances in optical resonator technologies have made it feasible to realize cQED in diamond. This article reviews progress towards coupling color centers in diamond to optical resonators, focusing on approaches compatible with quantum networks. We consider the challenges for cQED with solid-state emitters and introduce the relevant properties of diamond defect centers before examining two qualitatively different resonator designs: micrometer-scale Fabry-Perot cavities and diamond nanophotonic cavities. For each approach, we examine the underlying theory and fabrication, discuss strengths and outstanding challenges, and highlight state-of-the-art experiments. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1232 / 1252
页数:21
相关论文
共 50 条
  • [31] Quantum repeater on NV+13C color centers in diamond
    Bukach, Alexander A.
    Kilin, Sergei Ya.
    Nizovtsev, Alexander P.
    QUANTUM INFORMATICS 2005, 2006, 6264
  • [32] Coherence Properties and Quantum Control of Silicon Vacancy Color Centers in Diamond
    Becker, Jonas Nils
    Becher, Christoph
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (11):
  • [33] DISSIPATIVE QUANTUM DYNAMICS IN CAVITY QUANTUM ELECTRODYNAMICS
    KIMBLE, HJ
    RAIZEN, MG
    THOMPSON, RJ
    BRECHA, RJ
    CARMICHAEL, HJ
    SHEVY, Y
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 607 - 608
  • [34] Mesoscopic cavity quantum electrodynamics with quantum dots
    Childress, L
    Sorensen, AS
    Lukin, MD
    PHYSICAL REVIEW A, 2004, 69 (04): : 042302 - 1
  • [35] Cavity quantum electrodynamics for two quantum dots
    del Valle, Elena
    Troiani, Filippo
    Tejedor, Carlos
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1077 - +
  • [36] Cavity-quantum electrodynamics with quantum dots
    Kiraz, A
    Reese, C
    Gayral, B
    Zhang, LD
    Schoenfeld, WV
    Gerardot, BD
    Petroff, PM
    Hu, EL
    Imamoglu, A
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (02) : 129 - 137
  • [37] Photon trapping in cavity quantum electrodynamics
    Agarwal, G. S.
    Zhu, Yifu
    PHYSICAL REVIEW A, 2015, 92 (02):
  • [38] From cavity to circuit quantum electrodynamics
    Haroche, S.
    Brune, M.
    Raimond, J. M.
    NATURE PHYSICS, 2020, 16 (03) : 243 - 246
  • [39] Noise and order in cavity quantum electrodynamics
    Rekdal, PK
    Skagerstam, BSK
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 305 (3-4) : 404 - 426
  • [40] Cavity-enhanced emission and absorption of color centers in a diamond membrane with selectable strain
    Berghaus, Robert
    Sachero, Selene
    Bayer, Gregor
    Heupel, Julia
    Herzig, Tobias
    Feuchtmayr, Florian
    Meijer, Jan
    Popov, Cyril
    Kubanek, Alexander
    Physical Review Applied, 2025, 23 (03)