Cavity quantum electrodynamics with color centers in diamond

被引:86
|
作者
Janitz, Erika [1 ]
Bhaskar, Mihir K. [2 ]
Childress, Lilian [1 ]
机构
[1] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada
[2] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
来源
OPTICA | 2020年 / 7卷 / 10期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
SOLID-STATE SPIN; NITROGEN-VACANCY CENTERS; HIGH-PRESSURE SYNTHESIS; SINGLE-ATOM; ENTANGLEMENT DISTRIBUTION; DETERMINISTIC GENERATION; NANOPHOTONIC CIRCUITS; HERALDED ENTANGLEMENT; SPONTANEOUS EMISSION; ION-IMPLANTATION;
D O I
10.1364/OPTICA.398628
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coherent interfaces between optical photons and long-lived matter qubits form a key resource for a broad range of quantum technologies. Cavity quantum electrodynamics (cQED) offers a route to achieve such an interface by enhancing interactions between cavity-confined photons and individual emitters. Over the last two decades, a promising new class of emitters based on defect centers in diamond has emerged, combining long spin coherence times with atom-like optical transitions. More recently, advances in optical resonator technologies have made it feasible to realize cQED in diamond. This article reviews progress towards coupling color centers in diamond to optical resonators, focusing on approaches compatible with quantum networks. We consider the challenges for cQED with solid-state emitters and introduce the relevant properties of diamond defect centers before examining two qualitatively different resonator designs: micrometer-scale Fabry-Perot cavities and diamond nanophotonic cavities. For each approach, we examine the underlying theory and fabrication, discuss strengths and outstanding challenges, and highlight state-of-the-art experiments. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1232 / 1252
页数:21
相关论文
共 50 条
  • [1] Color centers in diamond for quantum applications
    Thiering, Gergo
    Gali, Adam
    DIAMOND FOR QUANTUM APPLICATIONS, PT 1, 2020, 103 : 1 - 36
  • [2] Quantum computer based on color centers in diamond
    Pezzagna, Sebastien
    Meijer, Jan
    APPLIED PHYSICS REVIEWS, 2021, 8 (01)
  • [3] Quantum networks based on color centers in diamond
    Ruf, Maximilian
    Wan, Noel H.
    Choi, Hyeongrak
    Englund, Dirk
    Hanson, Ronald
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (07)
  • [4] Quantum sensing using diamond color centers
    Park, Hongkun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [5] A cavity-based optical antenna for color centers in diamond
    Fuchs, Philipp
    Jung, Thomas
    Kieschnick, Michael
    Meijer, Jan
    Becher, Christoph
    APL PHOTONICS, 2021, 6 (08)
  • [6] Creating diamond color centers for quantum optical applications
    Waldermann, F. C.
    Olivero, P.
    Nunn, J.
    Surmacz, K.
    Wang, Z. Y.
    Jaksch, D.
    Taylor, R. A.
    Walmsley, I. A.
    Draganski, M.
    Reichart, P.
    Greentree, A. D.
    Jamieson, D. N.
    Prawer, S.
    DIAMOND AND RELATED MATERIALS, 2007, 16 (11) : 1887 - 1895
  • [7] CAVITY QUANTUM ELECTRODYNAMICS
    HAROCHE, S
    KLEPPNER, D
    PHYSICS TODAY, 1989, 42 (01) : 24 - 30
  • [8] Cavity quantum electrodynamics
    Brune, M
    Haroche, S
    QUANTUM DYNAMICS OF SIMPLE SYSTEMS, 1996, : 49 - 70
  • [9] Cavity quantum electrodynamics
    Brune, M
    QUANTUM ENTANGLEMENT AND INFORMATION PROCESSING, 2004, 79 : 161 - +
  • [10] CAVITY QUANTUM ELECTRODYNAMICS
    HAROCHE, S
    RAIMOND, JM
    SCIENTIFIC AMERICAN, 1993, 268 (04) : 54 - &