Measurements of a quantum bulk acoustic resonator using a superconducting qubit

被引:8
|
作者
Chou, M. -H. [1 ,2 ]
Dumur, E. [1 ,3 ]
Zhong, Y. P. [1 ]
Peairs, G. A. [1 ,4 ]
Bienfait, A. [1 ,5 ]
Chang, H. -S. [1 ]
Conner, C. R. [1 ]
Grebel, J. [1 ]
Povey, R. G. [1 ,2 ]
Satzinger, K. J. [1 ,4 ,6 ]
Cleland, A. N. [1 ,3 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Univ Claude Bernard, Univ Lyon, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
[6] Google, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
PHONONS; STATE;
D O I
10.1063/5.0023827
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, and optical photons when using optomechanically active constructs. Phonons, thus, hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88GHz resonant frequency, which, at cryogenic temperatures, displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor, Q i approximate to 4.3 x 10 4. Using a recently developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate the quantum control of the mechanics in the coupled system. This approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Quantum nondemolition measurements of a qubit
    Averin, DV
    PHYSICAL REVIEW LETTERS, 2002, 88 (20) : 4 - 207901
  • [42] Controlling the qubit-qubit coupling in the superconducting circuit with double-resonator couplers
    Wang, Hui
    Zhao, Yan-Jun
    Sun, Hui-Chen
    Xu, Xun-Wei
    Li, Yong
    Zheng, Yarui
    Liu, Qiang
    Li, Rengang
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [43] Quantum nondemolition measurements of a qubit
    Averin, DV
    TOWARDS THE CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2003, : 328 - 333
  • [44] Quantum nondemolition measurements of a qubit
    Averin, DV
    INTERNATIONAL WORKSHOP ON SUPERCONDUCTING NANO-ELECTRONICS DEVICES, 2002, : 1 - 10
  • [45] Role of relaxation in the quantum measurement of a superconducting qubit using a nonlinear oscillator
    Picot, T.
    Lupascu, A.
    Saito, S.
    Harmans, C. J. P. M.
    Mooij, J. E.
    PHYSICAL REVIEW B, 2008, 78 (13):
  • [46] Fast quantum limited readout of a superconducting qubit using a slow oscillator
    Johansson, Goran
    Tornberg, Lars
    Wilson, C. M.
    PHYSICAL REVIEW B, 2006, 74 (10)
  • [47] Back-action of a driven nonlinear resonator on a superconducting qubit
    Boissonneault, Maxime
    Doherty, A. C.
    Ong, F. R.
    Bertet, P.
    Vion, D.
    Esteve, D.
    Blais, A.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [48] Synchronization of a superconducting qubit to an optical field mediated by a mechanical resonator
    Nongthombam, Roson
    Kalita, Sampreet
    Sarma, Amarendra K.
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [49] Coupling a Superconducting Qubit to a Left-Handed Metamaterial Resonator
    Indrajeet, S.
    Wang, H.
    Hutchings, M. D.
    Taketani, B. G.
    Wilhelm, Frank K.
    LaHaye, M. D.
    Plourde, B. L. T.
    PHYSICAL REVIEW APPLIED, 2020, 14 (06):
  • [50] Spin-orbit qubit on a multiferroic insulator in a superconducting resonator
    Zhang, P.
    Xiang, Ze-Liang
    Nori, Franco
    PHYSICAL REVIEW B, 2014, 89 (11):