Measurements of a quantum bulk acoustic resonator using a superconducting qubit

被引:8
|
作者
Chou, M. -H. [1 ,2 ]
Dumur, E. [1 ,3 ]
Zhong, Y. P. [1 ]
Peairs, G. A. [1 ,4 ]
Bienfait, A. [1 ,5 ]
Chang, H. -S. [1 ]
Conner, C. R. [1 ]
Grebel, J. [1 ]
Povey, R. G. [1 ,2 ]
Satzinger, K. J. [1 ,4 ,6 ]
Cleland, A. N. [1 ,3 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Univ Claude Bernard, Univ Lyon, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
[6] Google, Santa Barbara, CA 93117 USA
基金
美国国家科学基金会;
关键词
PHONONS; STATE;
D O I
10.1063/5.0023827
中图分类号
O59 [应用物理学];
学科分类号
摘要
Phonon modes at microwave frequencies can be cooled to their quantum ground state using conventional cryogenic refrigeration, providing a convenient way to study and manipulate quantum states at the single phonon level. Phonons are of particular interest because mechanical deformations can mediate interactions with a wide range of different quantum systems, including solid-state defects, superconducting qubits, and optical photons when using optomechanically active constructs. Phonons, thus, hold promise for quantum-focused applications as diverse as sensing, information processing, and communication. Here, we describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88GHz resonant frequency, which, at cryogenic temperatures, displays large electromechanical coupling strength combined with a high intrinsic mechanical quality factor, Q i approximate to 4.3 x 10 4. Using a recently developed flip-chip technique, we couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate the quantum control of the mechanics in the coupled system. This approach promises a facile and flexible experimental approach to quantum acoustics and hybrid quantum systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Film bulk acoustic resonator using high-acoustic-impedance electrodes
    Ueda, Masanori
    Nishihara, Tokihiro
    Taniguchi, Shinji
    Yokoyama, Tsuyoshi
    Tsutsumi, Jun
    Iwaki, Masafumi
    Satoh, Yoshio
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (7B): : 4642 - 4646
  • [22] Superconducting flux qubit capacitively coupled to an LC resonator
    Yamamoto, T.
    Inomata, K.
    Koshino, K.
    Billangeon, P-M
    Nakamura, Y.
    Tsai, J. S.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [23] Resonator-zero-qubit architecture for superconducting qubits
    Galiautdinov, Andrei
    Korotkov, Alexander N.
    Martinis, John M.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [24] Superconducting qubit-resonator-atom hybrid system
    Yu, Deshui
    Kwek, Leong Chuan
    Amico, Luigi
    Dumke, Rainer
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (03):
  • [25] Tomographic measurements on superconducting qubit states
    Liu, YX
    Wei, LF
    Nori, F
    PHYSICAL REVIEW B, 2005, 72 (01)
  • [26] Rolling quantum dice with a superconducting qubit
    Barends, R.
    Kelly, J.
    Veitia, A.
    Megrant, A.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Hoi, I. -C.
    Jeffrey, E.
    Neill, C.
    O'Malley, P. J. J.
    Mutus, J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Wenner, J.
    White, T. C.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [27] Perspective on superconducting qubit quantum computing
    Ezratty, Olivier
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (05):
  • [28] Perspective on superconducting qubit quantum computing
    Olivier Ezratty
    The European Physical Journal A, 59
  • [29] Quantum Microwave Radiometry with a Superconducting Qubit
    Wang, Zhixin
    Xu, Mingrui
    Han, Xu
    Fu, Wei
    Puri, Shruti
    Girvin, S. M.
    Tang, Hong X.
    Shankar, S.
    Devoret, M. H.
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [30] Quantum Zeno effect with a superconducting qubit
    Matsuzaki, Y.
    Saito, S.
    Kakuyanagi, K.
    Semba, K.
    PHYSICAL REVIEW B, 2010, 82 (18):